Uitwerkingen werkcollege 11.

8.4.1
$\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right), \quad\left(\begin{array}{ccc}2 & 2 & 1 \\ 1 & 1 & 0 \\ -5 & -4 & -1\end{array}\right), \quad\left(\begin{array}{ccc}-3 & -2 & -2 \\ 0 & -1 & 0 \\ 1 & 0 & 1\end{array}\right), \quad\left(\begin{array}{cccc}2 & 0 & -1 & 2 \\ -9 & 1 & 3 & -8 \\ 8 & -1 & -3 & 7 \\ -8 & 1 & 3 & -8\end{array}\right)$.
8.4.4 If $A B$ is invertible, then $f_{A B}=f_{A} \circ f_{B}: F^{n} \rightarrow F^{n}$ is a bijection. Its injectivity implies that $f_{B}: F^{n} \rightarrow F^{n}$ is injective and its surjectivity implies that that f_{A} is surjective. From Corollary 8.5 we then conclude that f_{A} and f_{B} are isomorphisms as well, so A and B are invertible as well.
8.4.5 Since I_{n} is invertible, it follows from Exercise 8.4.4 that M and N are invertible. Note that from $M N=I_{n}$, we obtain $f_{M} \circ f_{N}=\mathrm{id}$, so f_{N} is a right inverse of the isomorphism f_{M}. Since every right inverse of a bijection is equal to the inverse of that bijection (see Appendix A), we find that f_{N} is the inverse of f_{M} and hence $N=M^{-1}$. It follows that we also have $N M=M^{-1} M=I_{n}$.
9.1.2 We berekenen de beelden van de elementen van de begin-basis B en schrijven die uit als lineaire combinaties van de elementen van de eind-basis B.

$$
\begin{aligned}
T(1) & =3=3 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4} \\
T(x) & =3 x=0 \cdot 1+3 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4} \\
T\left(x^{2}\right) & =3 x^{2}+(x-2) \cdot 2=-4 \cdot 1+2 \cdot x+3 \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4} \\
T\left(x^{3}\right) & =3 x^{3}+(x-2) \cdot 6 x=0 \cdot 1-12 \cdot x+6 \cdot x^{2}+3 \cdot x^{3}+0 \cdot x^{4} \\
T\left(x^{4}\right) & =3 x^{4}+(x-2) \cdot 12 x^{2}=0 \cdot 1+0 \cdot x-24 \cdot x^{2}+12 \cdot x^{3}+3 \cdot x^{4}
\end{aligned}
$$

Dus

$$
[T]_{B}^{B}=\left(\begin{array}{ccccc}
3 & 0 & -4 & 0 & 0 \\
0 & 3 & 2 & -12 & 0 \\
0 & 0 & 3 & 6 & -24 \\
0 & 0 & 0 & 3 & 12 \\
0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

9.1.4 We geven allee n de uitkomst:

$$
\left(\begin{array}{cccc}
3 & 0 & 7 & 0 \\
0 & 3 & 0 & 7 \\
-1 & 0 & 5 & 0 \\
0 & -1 & 0 & 5 \\
8 & 0 & 2 & 0 \\
0 & 8 & 0 & 2
\end{array}\right)
$$

9.2.1 (1)
$M=[\mathrm{id}]_{B}^{B^{\prime}}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4\end{array}\right) \quad$ and $\quad N=M^{-1}=\left(\begin{array}{cccc}1 & -\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{4} \\ 0 & 0 & 0 & \frac{1}{4}\end{array}\right)$
Of course, instead of finding the inverse of M, one can also find N by noticing that $v_{1}=v_{1}^{\prime}$ and $i v_{i}=v_{i}^{\prime}-v_{i-1}^{\prime}$ for $2 \leq i \leq 4$.
(2) we have $f_{M}=\varphi_{B}^{-1} \circ$ id $\circ \varphi_{B^{\prime}}=\varphi_{B}^{-1} \circ \varphi_{B^{\prime}}$, so for every $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ we find
$M x=f_{M}(x)=\varphi_{B}^{-1}\left(\varphi_{B^{\prime}}(x)\right)=\varphi_{B}^{-1}\left(x_{1} v_{1}^{\prime}+\ldots+x_{4} v_{4}^{\prime}\right)=\left(x_{1} v_{1}^{\prime}+\ldots+x_{4} v_{4}^{\prime}\right)_{B^{\prime}}$.
(3) Same as (2) with the roles of M and N reversed (as well as the roles of v_{i} and v_{i}^{\prime}).
9.2.2
$[\mathrm{id}]_{E}^{C}=\left(\begin{array}{ccc}-1 & -2 & 1 \\ -2 & 1 & -1 \\ 0 & 3 & -2\end{array}\right) \quad$ and $\quad[\mathrm{id}]_{C}^{E}=\left([\mathrm{id}]_{E}^{C}\right)^{-1}=\left(\begin{array}{ccc}1 & -1 & 1 \\ -4 & 2 & -3 \\ -6 & 3 & -5\end{array}\right)$.
9.3.1 (1)

$$
[T]_{E_{3}}^{E_{2}}=\left(\begin{array}{cc}
3 & 2 \\
1 & -1 \\
-1 & 2
\end{array}\right)
$$

(2)

$$
\begin{aligned}
{[T]_{C}^{B} } & =[\mathrm{id}]_{C}^{E_{3}} \cdot[T]_{E_{3}}^{E_{2}} \cdot[T]_{E_{2}}^{B} \\
& =\left(\begin{array}{ccc}
1 & -1 & 1 \\
-4 & 2 & -3 \\
-6 & 3 & -5
\end{array}\right) \cdot\left(\begin{array}{cc}
3 & 2 \\
1 & -1 \\
-1 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
11 & 4 \\
-39 & -9 \\
-60 & -15
\end{array}\right)
\end{aligned}
$$

9.4.2 (1) The line equals $L=L(a)$ with $a=(1,2)$. The projection of e_{i} on L equals $\frac{\left\langle a, e_{i}\right\rangle}{\langle a, a\rangle} \cdot a$, so we have $\pi\left(e_{1}\right)=\frac{1}{5} a$ and $\pi\left(e_{2}\right)=\frac{2}{5} a$, so

$$
[\pi]_{B}^{B}=\frac{1}{5} \cdot\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

(2) Take $v_{1}=a$ and $v_{2}=(2,-1)$. Then

$$
[\pi]_{C}^{C}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

(3)

$$
\begin{aligned}
{[\pi]_{B}^{B} } & =[\mathrm{id}]_{B}^{C} \cdot[\pi]_{C}^{C} \cdot[\mathrm{id}]_{C}^{B}=[\mathrm{id}]_{B}^{C} \cdot[\pi]_{C}^{C} \cdot\left([\mathrm{id}]_{B}^{C}\right)^{-1} \\
& =\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)^{-1}=\frac{1}{5} \cdot\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
\end{aligned}
$$

