Uitwerkingen werkcollege 7.

3.4.10 In all three cases it is clear that $v_{i}^{\prime} \in L\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ for all $i \in\{1, \ldots, n\}$. For each of the three cases we now show that we also have $v_{i} \in L\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ for all $i \in\{1, \ldots, n\}$. Indeed, in case (1), this follows from the fact that we have $v_{j}=\lambda^{-1} v_{j}^{\prime}$. In case (2), we have $v_{k}=v_{k}^{\prime}-\lambda v_{j}^{\prime}$. In case (3), we have $v_{j}=v_{k}^{\prime}$ and $v_{k}=v_{j}^{\prime}$. Hence, it follows from Lemma 3.32, applied to $S=\left\{v_{1}, \ldots, v_{n}\right\}$ and $T=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$, that we have

$$
L\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)=L\left(v_{1}, v_{2}, \ldots, v_{n}\right)=W
$$

5.6.2 Identify x with an $n \times 1$ matrix and y with an $m \times 1$ matrix. Then as in Remark 5.33 we have

$$
\langle M x, y\rangle=(M x)^{\top} \cdot y=\left(x^{\top} M^{\top}\right) \cdot y=x^{\top} \cdot\left(M^{\top} y\right)=\left\langle x, M^{\top} y\right\rangle
$$

5.6.3

$$
a^{\top} \cdot b=(24), \quad a \cdot\left(b^{\top}\right)=\left(\begin{array}{cccc}
-2 & 1 & 4 & 3 \\
-4 & 2 & 8 & 6 \\
-6 & 3 & 12 & 9 \\
-8 & 4 & 16 & 12
\end{array}\right)
$$

6.1.3

$$
B_{1}=N_{1,2}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad B_{2}=M_{2,1}(-2) \cdot M_{4,1}(1)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

$$
B_{3}=M_{3,2}(4) \cdot M_{4,2}(5)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 4 & 1 & 0 \\
0 & 5 & 0 & 1
\end{array}\right) \quad B_{4}=M_{4,3}(-1)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

$$
B_{5}=M_{3,4}(-3)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right) \quad B_{6}=M_{4,3}(-2)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 1
\end{array}\right)
$$

$$
B_{7}=N_{3,4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad B_{8}=M_{4,3}(-4)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -4 & 1
\end{array}\right)
$$

$$
B_{9}=L_{4}(-1)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$$
B=B_{9} \cdot B_{8} \cdot B_{7} \cdot B_{6} \cdot B_{5} \cdot B_{4} \cdot B_{3} \cdot B_{2} \cdot B_{1}
$$

6.2.1 These answers are not unique (though it should be relatively easy to check any other answer: they should be in row echelon form as well, and they should have the same row space).

$$
\begin{gathered}
A_{1}^{\prime}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right), \quad A_{2}^{\prime}=\left(\begin{array}{llll}
1 & 0 & 1 & 8 \\
0 & 1 & 1 & 20
\end{array}\right) \\
A_{3}^{\prime}=\left(\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad A_{4}^{\prime}=\left(\begin{array}{ll}
1 & 3 \\
0 & 1 \\
0 & 0
\end{array}\right), \quad A_{5}^{\prime}=\left(\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

6.3.3

$$
\begin{gathered}
\left(\begin{array}{rrr}
1 & 3 & 6+2 i \\
0 & 1 & \frac{9}{17}(4+i)
\end{array}\right) \quad \text { with kernel generated by } w=\left(\begin{array}{c}
\frac{1}{17}(6-7 i) \\
-\frac{9}{17}(4+i) \\
1
\end{array}\right) . \\
\left(\begin{array}{rrrr}
1 & -3 & 3 \\
0 & 1 & -\frac{2}{3} \\
0 & 0 & 0
\end{array}\right) \quad \text { with kernel generated by } w=\left(\begin{array}{c}
-1 \\
\frac{2}{3} \\
1
\end{array}\right) . \\
\left(\begin{array}{rrrrr}
1 & 0 & 0 & -1 & -2 \\
0 & 1 & -1 & 2 & 6 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \text { with kernel generated by } w_{3}=\left(\begin{array}{c}
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \text { en } w_{5}=\left(\begin{array}{c}
2 \\
-6 \\
0 \\
0 \\
1
\end{array}\right) . \\
\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \text { with kernel generated by } w_{3}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right) .
\end{gathered}
$$

6.3.4 (1) If f_{A} is injective, then the kernel of A is trivial, that is, $\operatorname{ker} A=\{0\}$. Therefore, every column in a row echelon form A^{\prime} for A contains a pivot. This means there are n pivots, and as each of the m rows contains at most one pivot, there are at least n rows, so $m \geq n$.
(2) If A is invertible, then f_{A} is an isomorphism, so both f_{A} and its inverse $f_{A^{-1}}$ are injective. Applying part (1) to both A and A^{-1} we find both $m \geq n$ and $n \geq m$, so $m=n$.
6.3.5 Note that since f_{A} is linear, the hyperplane H contains 0 . We answer this question in two different ways.
(1) The projection $\pi_{H}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ and the reflection $s_{H}=f_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ are related by $s_{H}=2 \pi_{H}$ - id by Example 4.22, or, equivalently, $2 \pi_{H}=s_{H}+\mathrm{id}=f_{A}+\mathrm{id}=f_{A}+f_{I}=f_{A+I}$. The image of π_{H} (and therefore of of $2 \pi_{H}$) is therefore equal to the image of f_{A+I}, which is the column space of

$$
A+I=\frac{1}{7} \cdot\left(\begin{array}{cccc}
12 & -4 & -2 & 2 \\
-4 & 6 & -4 & 4 \\
-2 & -4 & 12 & 2 \\
2 & 4 & 2 & 12
\end{array}\right)
$$

This is one way to answer the question, as it does not ask for a specific way to represent it. We could now also find a normal of H by computing the kernel of $A+I$. A row echelon form for $7(A+I)$ is

$$
\left(\begin{array}{llll}
1 & 2 & 1 & 6 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

so the kernel is generated by

$$
a=\left(\begin{array}{c}
-1 \\
-2 \\
-1 \\
1
\end{array}\right)
$$

which means that we have $H=a^{\perp}$.
(2) Set $L=H^{\perp}$, which is a line through 0 The projection $\pi_{L}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ and the reflection $s_{H}=f_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ are related by $s_{H}=\mathrm{id}-2 \pi_{L}$ by Example 4.22 , or, equivalently, $2 \pi_{L}=\mathrm{id}-s_{H}=\mathrm{id}-f_{A}=f_{I-A}$. The image of π_{L} (and therefore of $2 \pi_{L}$) is therefore equal to the image of f_{I-A}, which is the column space of

$$
I-A=\frac{1}{7} \cdot\left(\begin{array}{cccc}
2 & 4 & 2 & -2 \\
4 & 8 & 4 & -4 \\
2 & 4 & 2 & -2 \\
-2 & -4 & -2 & 2
\end{array}\right)
$$

The columns of $I-A$ are all multiples of the vector

$$
b=\left(\begin{array}{c}
1 \\
2 \\
1 \\
-1
\end{array}\right)
$$

so L is generated by b and we have $H=b^{\perp}$.

