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3.4.10 In all three cases it is clear that v′i ∈ L(v1, v2, . . . , vn) for all i ∈ {1, . . . , n}.
For each of the three cases we now show that we also have vi ∈ L(v′1, v

′
2, . . . , v

′
n)

for all i ∈ {1, . . . , n}. Indeed, in case (1), this follows from the fact that
we have vj = λ−1v′j . In case (2), we have vk = v′k − λv′j . In case (3), we
have vj = v′k and vk = v′j . Hence, it follows from Lemma 3.32, applied to
S = {v1, . . . , vn} and T = {v′1, . . . , v′n}, that we have

L(v′1, v
′
2, . . . , v

′
n) = L(v1, v2, . . . , vn) = W.

5.6.2 Identify x with an n × 1matrix and y with an m × 1 matrix. Then as in
Remark 5.33 we have

〈Mx, y〉 = (Mx)> · y = (x>M>) · y = x> · (M>y) = 〈x,M>y〉.

5.6.3

a> · b = (24), a · (b>) =


−2 1 4 3
−4 2 8 6
−6 3 12 9
−8 4 16 12

 .

6.1.3

B1 = N1,2 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 B2 = M2,1(−2) ·M4,1(1) =


1 0 0 0
−2 1 0 0
0 0 1 0
1 0 0 1



B3 = M3,2(4) ·M4,2(5) =


1 0 0 0
0 1 0 0
0 4 1 0
0 5 0 1

 B4 = M4,3(−1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1



B5 = M3,4(−3) =


1 0 0 0
0 1 0 0
0 0 1 −3
0 0 0 1

 B6 = M4,3(−2) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1



B7 = N3,4 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 B8 = M4,3(−4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −4 1



B9 = L4(−1) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

B = B9 ·B8 ·B7 ·B6 ·B5 ·B4 ·B3 ·B2 ·B1.
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6.2.1 These answers are not unique (though it should be relatively easy to check
any other answer: they should be in row echelon form as well, and they
should have the same row space).

A′1 =

(
1 1 1
0 1 0

)
, A′2 =

(
1 0 1 8
0 1 1 20

)

A′3 =

 1 0 −2
0 1 1
0 0 1

 , A′4 =

 1 3
0 1
0 0

 , A′5 =

(
1 −2
0 1

)
.

6.3.3(
1 3 6 + 2i
0 1 9

17 (4 + i)

)
with kernel generated by w =

 1
17 (6− 7i)
− 9

17 (4 + i)
1

 .

 1 −3 3
0 1 − 2

3
0 0 0

 with kernel generated by w =

−1
2
3
1

 .

 1 0 0 −1 −2
0 1 −1 2 6
0 0 0 1 0

 with kernel generated by w3 =


0
1
1
0
0

 en w5 =


2
−6
0
0
1

 .


1 0 −1 0
0 1 1 −1
0 0 0 1
0 0 0 0

 with kernel generated by w3 =


1
−1
1
0

 .

6.3.4 (1) If fA is injective, then the kernel of A is trivial, that is, kerA = {0}.
Therefore, every column in a row echelon form A′ for A contains a
pivot. This means there are n pivots, and as each of the m rows
contains at most one pivot, there are at least n rows, so m ≥ n.

(2) If A is invertible, then fA is an isomorphism, so both fA and its inverse
fA−1 are injective. Applying part (1) to both A and A−1 we find both
m ≥ n and n ≥ m, so m = n.

6.3.5 Note that since fA is linear, the hyperplane H contains 0. We answer this
question in two different ways.
(1) The projection πH : R4 → R4 and the reflection sH = fA : R4 → R4

are related by sH = 2πH − id by Example 4.22, or, equivalently,
2πH = sH + id = fA + id = fA + fI = fA+I . The image of πH (and
therefore of of 2πH) is therefore equal to the image of fA+I , which is
the column space of

A+ I =
1

7
·


12 −4 −2 2
−4 6 −4 4
−2 −4 12 2
2 4 2 12

 .
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This is one way to answer the question, as it does not ask for a spe-
cific way to represent it. We could now also find a normal of H by
computing the kernel of A+ I. A row echelon form for 7(A+ I) is

1 2 1 6
0 1 0 2
0 0 1 1
0 0 0 0


so the kernel is generated by

a =


−1
−2
−1
1

 ,

which means that we have H = a⊥.
(2) Set L = H⊥, which is a line through 0 The projection πL : R4 → R4

and the reflection sH = fA : R4 → R4 are related by sH = id−2πL by
Example 4.22, or, equivalently, 2πL = id−sH = id−fA = fI−A. The
image of πL (and therefore of 2πL) is therefore equal to the image of
fI−A, which is the column space of

I −A =
1

7
·


2 4 2 −2
4 8 4 −4
2 4 2 −2
−2 −4 −2 2

 .

The columns of I −A are all multiples of the vector

b =


1
2
1
−1

 ,

so L is generated by b and we have H = b⊥.


