Uitwerkingen werkcollege 11.

8.4.1
$\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right), \quad\left(\begin{array}{ccc}2 & 2 & 1 \\ 1 & 1 & 0 \\ -5 & -4 & -1\end{array}\right), \quad\left(\begin{array}{ccc}-3 & -2 & -2 \\ 0 & -1 & 0 \\ 1 & 0 & 1\end{array}\right), \quad\left(\begin{array}{cccc}2 & 0 & -1 & 2 \\ -9 & 1 & 3 & -8 \\ 8 & -1 & -3 & 7 \\ -8 & 1 & 3 & -8\end{array}\right)$.
8.4.4 We use the definition in Definition 5.22: $A B$ is invertible means that $f_{A B}$ is an isomorphism. Then $f_{A B}=f_{A} \circ f_{B}: F^{n} \rightarrow F^{n}$ is a bijection. Its injectivity implies that $f_{B}: F^{n} \rightarrow F^{n}$ is injective and its surjectivity implies that that f_{A} is surjective. From Corollary 8.5 we then conclude that f_{A} and f_{B} are isomorphisms as well, so A and B are invertible as well.
8.4.5 Since I_{n} is invertible, it follows from Exercise 8.4.4 that M and N are invertible. Note that from $M N=I_{n}$, we obtain $f_{M} \circ f_{N}=\mathrm{id}$, so f_{N} is a right inverse of the isomorphism f_{M}. Since every right inverse of a bijection is equal to the inverse of that bijection (see Appendix A), we find that f_{N} is the inverse of f_{M} and hence $N=M^{-1}$. It follows that we also have $N M=M^{-1} M=I_{n}$.

Alternatively, we can use Lemma 8.30. Parts (6) and (7) give that M and N are invertible, and the last statement in Lemma 8.30 says that and $M=N^{-1}$ and $N=M^{-1}$. Then $N M=M^{-1} M=I_{n}$.
8.5.1 For the first three systems we have

$$
A=\left(\begin{array}{ccc}
2 & 3 & -2 \\
3 & 2 & 2 \\
0 & -1 & 2
\end{array}\right), \quad \text { with } \quad b=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad b=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

respectively. We can reduce the work by extending the matrix A with all three choices for b and finding a reduced row echelon form. The extended matrix is

$$
\left(\begin{array}{ccc|ccc}
2 & 3 & -2 & 0 & 1 & 1 \\
3 & 2 & 2 & 0 & -1 & 1 \\
0 & -1 & 2 & 0 & -1 & 1
\end{array}\right)
$$

and it has reduced row echelon form

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & 0 & -1 & 0 \\
0 & 1 & -2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Hence the kernel of A is generated by $a=(-2,2,1)$, that is ker $A=L(a)$. Now for the first b, namely $b=0$, the solution set is ker $A=L(a)$. For the second b, if we had extended A by only b, the last column of reduced row echelon form of this extension $(A \mid b)$ does not have a pivot in the last column, so the system is consistent. We obtain a solution by setting $x=\left(x_{1}, x_{2}, 1\right)$ and solving for x_{1} and x_{2}, which gives $x=(-3,3,1)$. Therefore, the complete solution space is

$$
\{(-3,3,1)+z: z \in \operatorname{ker} A\}=\{(-3,3,1)+\lambda a: \lambda \in \mathbb{R}\}
$$

For the third b, namely $b=(1,1,1)$, the reduced row echelon form of the extended matrix $(A \mid b)$ has a pivot in the last column, so there is no solution. For the last case, we have

$$
A=\left(\begin{array}{cccc}
3 & 1 & 2 & -2 \\
2 & -1 & 2 & 0 \\
1 & 0 & 1 & 0 \\
-2 & -1 & -1 & 1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)
$$

The extended matrix $(A \mid b)$ has reduced row echelon form

$$
\left(\begin{array}{cccc|c}
1 & 0 & 0 & 0 & -13 \\
0 & 1 & 0 & 0 & 4 \\
0 & 0 & 1 & 0 & 16 \\
0 & 0 & 0 & 1 & -2
\end{array}\right)
$$

Hence, there is a unique solution, namely $x=(-13,4,16,-2)$.
9.1.2 We berekenen de beelden van de elementen van de begin-basis B en schrijven die uit als lineaire combinaties van de elementen van de eind-basis B.

$$
\begin{aligned}
T(1) & =3=3 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4} \\
T(x) & =3 x=0 \cdot 1+3 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4} \\
T\left(x^{2}\right) & =3 x^{2}+(x-2) \cdot 2=-4 \cdot 1+2 \cdot x+3 \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4} \\
T\left(x^{3}\right) & =3 x^{3}+(x-2) \cdot 6 x=0 \cdot 1-12 \cdot x+6 \cdot x^{2}+3 \cdot x^{3}+0 \cdot x^{4} \\
T\left(x^{4}\right) & =3 x^{4}+(x-2) \cdot 12 x^{2}=0 \cdot 1+0 \cdot x-24 \cdot x^{2}+12 \cdot x^{3}+3 \cdot x^{4}
\end{aligned}
$$

Dus

$$
[T]_{B}^{B}=\left(\begin{array}{ccccc}
3 & 0 & -4 & 0 & 0 \\
0 & 3 & 2 & -12 & 0 \\
0 & 0 & 3 & 6 & -24 \\
0 & 0 & 0 & 3 & 12 \\
0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

9.1.3 The map $T: F[x]_{k-1} \rightarrow F^{k}$ that sends $g \in F[x]_{k-1}$ to $\left(g\left(\alpha_{1}\right), g\left(\alpha_{2}\right), \ldots, g\left(\alpha_{k}\right)\right)$ is an isomorphism by Exercise 8.1.2 (with $n=k-1$). By Example 9.5, the matrix, say A, associated to T with respect to the basis $B=\left(1, x, \ldots, x^{k-1}\right)$ of $F[x]_{k-1}$ and the standard basis E of F^{k} is exactly the given Vandermonde matrix. Therefore, the $\operatorname{map} f_{A}: F^{k} \rightarrow F^{k}$ is equal to the composition $\varphi_{E}^{-1} \circ T \circ \varphi_{B}=T \circ \varphi_{B}$ of isomorphisms, so it is an isomorphism, and therefore A is invertible.
9.1.4 We geven alleen de uitkomst:

$$
\left(\begin{array}{cccc}
3 & 0 & 7 & 0 \\
0 & 3 & 0 & 7 \\
-1 & 0 & 5 & 0 \\
0 & -1 & 0 & 5 \\
8 & 0 & 2 & 0 \\
0 & 8 & 0 & 2
\end{array}\right)
$$

9.2.1 (1)

$$
M=[\mathrm{id}]_{B}^{B^{\prime}}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 4
\end{array}\right) \quad \text { and } \quad N=M^{-1}=\left(\begin{array}{cccc}
1 & -\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3} & -\frac{1}{4} \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right)
$$

Of course, instead of finding the inverse of M, one can also find N by noticing that $v_{1}=v_{1}^{\prime}$ and $i v_{i}=v_{i}^{\prime}-v_{i-1}^{\prime}$ for $2 \leq i \leq 4$.
(2) we have $f_{M}=\varphi_{B}^{-1} \circ$ id $\circ \varphi_{B^{\prime}}=\varphi_{B}^{-1} \circ \varphi_{B^{\prime}}$, so for every $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ we find
$M x=f_{M}(x)=\varphi_{B}^{-1}\left(\varphi_{B^{\prime}}(x)\right)=\varphi_{B}^{-1}\left(x_{1} v_{1}^{\prime}+\ldots+x_{4} v_{4}^{\prime}\right)=\left(x_{1} v_{1}^{\prime}+\ldots+x_{4} v_{4}^{\prime}\right)_{B^{\prime}}$.
(3) Same as (2) with the roles of M and N reversed (as well as the roles of v_{i} and v_{i}^{\prime}).
9.2.2

$$
[\mathrm{id}]_{E}^{C}=\left(\begin{array}{ccc}
-1 & -2 & 1 \\
-2 & 1 & -1 \\
0 & 3 & -2
\end{array}\right) \quad \text { and } \quad[\mathrm{id}]_{C}^{E}=\left([\mathrm{id}]_{E}^{C}\right)^{-1}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-4 & 2 & -3 \\
-6 & 3 & -5
\end{array}\right)
$$

