Uitwerkingen werkcollege 14. 11.2.1 The constant term of the characteristic polynomial P_A is the value $$P_A(0) = \det(0 \cdot I - A) = \det(-A) = (-1)^n \det(A).$$ For the coefficient of t^{n-1} , we use induction. For n=1 this is trivially equal to $-\operatorname{Tr} A$, so assume n>1. We compute the determinant of $C=tI_n-A$ by expansion along the first row. We write $C=(c_{ij})_{i,j}$ and get $$P_A(t) = \det(tI_n - A) = \det C = \sum_{j=1}^n (-1)^{1+j} c_{1j} \cdot \det C_{1j},$$ where C_{1j} denotes the matrix obtained from C by deleting the first row and the j-th column. For j > 1, the matrix C_{1j} contains only n-2 entries that are linear in t, while the rest of the entries are constant, so det C_{1j} has degree at most n-2. This implies that the coefficient of t^{n-1} in P_A is equal to the coefficient of t^{n-1} in the term for j=1, which by the induction hypothesis is equal to $$c_{11} \cdot \det C_{11} = (t - a_{11}) \cdot \det(tI_{n-1} - A_{11}) = (t - a_{11}) \cdot P_{A_{11}}(t)$$ $$= (t - a_{11}) (t^{n-1} - \operatorname{Tr}(A_{11})t^{n-2} + \dots) = t^n - (\operatorname{Tr} A_{11} + a_{11})t^{n-1} + \dots$$ So the coefficient of t^{n-1} is $-a_{11} - \operatorname{Tr} A_{11} = -\operatorname{Tr} A$. - 11.2.2 Here it is a good idea to choose a basis of \mathbb{R}^3 that is adapted to the question. So take $v_1 \in \mathbb{R}^3$ such that $V = v_1^{\perp}$, and let v_2 and v_3 form a basis of V, then, as V and $L(v_1)$ are complementary, v_1 , v_2 and v_3 form a basis of \mathbb{R}^3 . The matrix of s with respect to this basis is diagonal, with diagonal entries (-1,1,1). Therefore, $P_s(t) = (t-1)^2(t+1)$. - 11.2.3 (1) Characteristic polynomial is $t^2 4$. Eigenvalues are 2 and -2. Basis of eigenspace for $\lambda = -2$ is ((1, -1)). Basis of eigenspace for $\lambda = 2$ is ((1, -2)). - (2) Characteristic polynomial is $(t-3)^2$. Eigenvalue is 3. Basis of eigenspace for $\lambda = 3$ is ((1,2)). - (3) Characteristic polynomial is $(t+1)(t-3)^2$. Eigenvalues are -1 and 3. Basis of eigenspace for $\lambda = -1$ is ((1,0,-1)). Basis of eigenspace for $\lambda = 3$ is ((2,0,-1),(0,1,0)). - (4) Characteristic polynomial is $(t-2)^3$. Eigenvalue is only 2. Basis of eigenspace for $\lambda = 2$ is ((1, -2, 0), (0, 0, 1)). - (5) Characteristic polynomial is $(t-1)^2(t-2)(t+3)$. Eigenvalues are 1, 2, and -3. Basis of eigenspace for $\lambda = 2$ is ((1, -1, 0, 0)). Basis of eigenspace for $\lambda = -3$ is ((0, 0, 0, 1)). Basis of eigenspace for $\lambda = 1$ is ((0, 0, 1, 0)). - (6) Characteristic polynomial is $(t-1)^2(t-2)^2$. Eigenvalues are 1 and 2. Basis of eigenspace for $\lambda = 2$ is ((1,0,-2,0)). Basis of eigenspace for $\lambda = 1$ is ((0,0,1,0)). - 11.3.1 For k > 0 this was already proved in the text. For k = 0 both sides are equal to I_n , so we may assume k < 0. Then by Proposition 5.25, the inverse of PDP^{-1} is $$(PDP^{-1})^{-1} = (P^{-1})^{-1}D^{-1}P^{-1} = PD^{-1}P^{-1}.$$ Hence, we find $$(PDP^{-1})^k = ((PDP^{-1})^{-1})^{-k} = \underbrace{(PD^{-1}P^{-1})(PD^{-1}P^{-1}) \cdots (PD^{-1}P^{-1})}_{-k}$$ $$= P(D^{-1})^{-k}P^{-1} = PD^kP^{-1}.$$ - 11.3.2 (1) The first is not diagonalisable, because the only eigenvalue is 1 and the corresponding eigenspace is 1-dimensional, namely generated by $e_1 = (1,0)$. - (2) $P = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ (3) $P = \begin{pmatrix} 1 & 1 & 0 \\ 4 & 0 & 1 \\ -2 & 1 & -1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ - 11.3.3 (1) Yes, by Proposition 11.25. $$P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix}$$ (2) Yes, by Proposition 11.25. $$P = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$ (3) Yes, by Proposition 11.25. $$P = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$$ - (4) No: only eigenvalue is 3, with algebraic multiplicity 2 and geometric multiplicity 1. - (5) Yes. $$P = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$ (6) No: only eigenvalue is 2, with algebraic multiplicity 3 and geometric multiplicity 2. - (7) No: the geometric multiplicity of $\lambda = 1$ is 1 and the algebraic multiplicity is 2. - (8) No: the geometric multiplicity of $\lambda = 1$ is 1 and the algebraic multiplicity is 2. - 11.3.11 Let ρ denote the rotation over θ . If $\rho(v) = \lambda v$ for some nonzero $v \in \mathbb{R}^2$ and some $\lambda \in \mathbb{R}$, then ρ sends the line L = L(v) to itself, so the angle is either 0 or 180° (in the first case all eigenvalues are 1, in the second case they are -1). - 11.3.12 (1) Since all columns are the same, the column space $C(N_n)$ is generated by the vector $a=(1,1,1,\ldots,1)$, so $\operatorname{rk} N_n=\dim C(N_n)=1$, and hence $\dim \ker N_n=n-\operatorname{rk} N_n=n-1$. - (2) If v is an eigenvector with eigenvalue λ , then $\lambda v = N_n v \in \text{im } N_n = L(a)$, so λv is a multiple of a. Then either the eigenvalue λ is 0, or we get $v \in L(a)$, say $v = \mu a$ for some $\mu \in \mathbb{R}$ and then $N_n v = \mu N_n a = \mu n a = n v$, so the eigenvalue λ is n. - (3) The corresponding eigenspaces are $E_n(N_n) = L(a)$ and $E_0(N_n) = \ker N_n$, which has dimension n-1. Hence, the dimensions of the eigenspaces add up to n, so N_n is diagonalisable. - (4) Since N_n is diagonalisable, the algebraic and geometric multiplicities of the eigenvalues 0 and n agree, so they are n-1 and 1, repectively, so the characteristic polynomial is $P_{N_n}(t) = (t-n)(t-0)^{n-1} = t^n nt^{n-1}$. - (5) Substituting $\lambda = 1$ into P_{N_n} , we find $$\det M_n = \det(N_n - I_n) = \det(-I_n(I_n - N_n)) = \det(-I_n) \cdot \det(1 \cdot I_n - N_n)$$ = $(-1)^n P_{N_n}(1) = (-1)^n (1 - n).$