Uitwerkingen werkcollege 3.

2.1.2 First we need to check that if we "add" two elements $x, y \in V$ with the usual operation \oplus , we actually get an element of V. This is indeed the case because if $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ satisfy $x_1 + x_2 + x_3 = 0$ and $y_1 + y_2 + y_3 = 0$, then the sum $z = x \oplus y$ equals (z_1, z_2, z_3) with $z_i = x_i + y_i$ for $1 \leq i \leq 3$, and we have

$$z_1 + z_2 + z_3 = (x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3)$$

= $(x_1 + x_2 + x_3) + (y_1 + y_2 + y_3) = 0 + 0 = 0,$

so also $z \in V$.

We also need to check that every scalar multiple of any element $x = (x_1, x_2, x_3) \in V$ is again contained in V. This is indeed the case, because for every $\lambda \in \mathbb{R}$ we have $\lambda \odot x = (\lambda x_1, \lambda x_2, \lambda x_3)$ and if $x_1 + x_2 + x_3 = 0$, then $\lambda x_1 + \lambda x_2 + \lambda x_3 = \lambda (x_1 + x_2 + x_3) = 0$, so $\lambda \odot x \in V$.

Now that we know that the operations \oplus and \odot are indeed well defined, we can check whether together with the zero $0_V = (0, 0, 0)$, they satisfy the eight axioms of Definition 2.1.

To check that for all $x, y \in V$ we have $x \oplus y = y \oplus x$, we note that we already knew this for all $x, y \in \mathbb{R}^3$, so it certainly holds for all $x, y \in V$, because V is a subset of \mathbb{R}^3 . Similarly, all axioms, except for the fourth, hold for all elements in \mathbb{R}^3 , so certainly for all elements in V.

It remains to check the fourth axiom. For $x = (x_1, x_2, x_3) \in V$ we define $x' = (-x_1, -x_2, -x_3)$, of which the sum of coordinates is $(-x_1) + (-x_2) + (-x_3) = -(x_1 + x_2 + x_3) = 0$, so we have $x' \in V$. Of course, we have $x \oplus x' = (x_1 + (-x_1), x_2 + (-x_2), x_3 + (-x_3)) = (0, 0, 0) = 0_V$, so also the fourth axiom is satisfied. It follows that V, together with the usual coordinate-wise addition and scalar multiplication and 0_V as zero vector is indeed a vector space.

2.1.3 In this case, V is not a vector space, because it is not closed under addition. To show this, it suffices to give two elements $x, y \in V$ with $x \oplus y \notin V$. For example, the elements x = (1, 0, 0) and y = (0, 1, 0) are contained in V, but $x \oplus y = (1, 1, 0)$ is not. [Alternatively, one can show that V is not closed under scalar multiplication: if $x \in V$, then $2x \notin V$. Or one notes that the suggested zero vector is not contained in V.]

2.1.4

2.2.9 (3) Yes, all axioms can be checked.

- (4) Yes, all axioms can be checked.
- (5) No, the sum of two elements is not even in V, and the scalar multiples (by scalars other than 1) are not in V either, so we have no addition and scalar multiplication on V. So we can not even phrase any of the axioms, except for axiom (6).
- (6) Yes, all axioms can be checked.

- (7) No, the sum of two elements is not even in V, and the scalar multiples (by scalars other than 1) are not in V either, so we have no addition and scalar multiplication on V. So we can not even phrase any of the axioms, except for axiom (6).
- 2.2.10 By Lemma 1.25, the set a^{\perp} is closed under addition and scalar multiplication: for every $x, y \in a^{\perp}$ and $\lambda \in \mathbb{R}$, we have $x \oplus y \in a^{\perp}$ and $\lambda \odot x \in a^{\perp}$. Therefore, we do indeed have a well defined addition and scalar multiplication on a^{\perp} . As in Exercise 2.1.2, we note that all axioms except axiom (4) state that some property has to hold for all vectors (or pairs or triples of vectors) in a^{\perp} and perhaps all scalars (or pairs of scalars). Given that we already know these properties hold for all (pairs or triples of) vectors in \mathbb{R}^n , they certainly hold for all (pairs or triples of) vectors in a^{\perp} . As for axiom (4), for every $x \in a^{\perp}$ we know that $x' = (-1) \cdot x$ is contained in a^{\perp} , and $x + x' = (1 + (-1))x = 0 \cdot x = 0$, so also axiom (4) is satisfied. This finishes the proof. Cf. Lemma 3.2.
- 2.2.12 For f and g in $V^X = \text{Map}(X, V)$ we define f + g in V^X by defining, for all x in X, (f + g)(x) = f(x) + g(x) (pointwise addition). Similarly, we define, for f in V^X and for λ in F, and for all x in X, $(\lambda \cdot f)(x) = \lambda \cdot (f(x))$ (pointwise multiplication). One can then check that all 8 axioms for vector spaces hold in this case.
- 2.2.14 Laat $a = (a_n)_{n \ge 0}$ en $b = (b_n)_{n \ge 0}$ elementen van S zijn. De termsgewijze som a + b is dan de rij gegeven door $(a + b)_n = a_n + b_n$. Voor deze rij geldt, voor alle $n \ge 0$:

$$(a+b)_{n+2} = a_{n+2} + b_{n+2} = (a_{n+1} + a_n) + (b_{n+1} + b_n) =$$

= $(a_{n+1} + b_{n+1}) + (a_n + b_n) = (a+b)_{n+1} + (a+b)_n,$

dus is a + b ook in S. Laat nu $a = (a_n)_{n \ge 0}$ in S en $\lambda \in \mathbb{R}$. Dan is het termsgewijze product $\lambda \cdot a$ gegeven door $(\lambda \cdot a)_n = \lambda \cdot a_n$. Voor deze rij geldt, voor alle $n \ge 0$:

$$(\lambda \cdot a)_{n+2} = \lambda \cdot a_{n+2} = \lambda \cdot (a_{n+1} + a_n) =$$
$$= \lambda \cdot a_{n+1} + \lambda \cdot a_n = (\lambda \cdot a)_{n+1} + (\lambda \cdot a)_n,$$

dus is $\lambda \cdot a$ ook in S. We moeten nu laten zien dat S, met deze optelling en scalairvermenigvuldiging, een \mathbb{R} -vectorruimte is. Aan alle 8 axioma's behalve de 4-de is voldaan omdat de gevraagde gelijkheden termsgewijs gelden (we kunnen ook zeggen dat S een deelverzameling is van Map (\mathbb{N}, \mathbb{R}) , en dat de gevraagde gelijkheden gelden in deze grotere vectorruimte). Voor axioma 4: gegeven $a = (a_n)_{n\geq 0}$, laat $a' = (-1) \cdot a$. Dan is a' in S (zie hierboven, met $\lambda = -1$), en geldt a + a' = 0.

Opmerking: met de kennis van Hoofdstuk 3 kunnen we zeggen dat S een deelruimte is van Map (\mathbb{N}, \mathbb{R}) en dus een vectorruimte is.

2.3.2 For (3), we have

$$\lambda \odot 0_V = \lambda \odot (0_V \oplus 0_V) = (\lambda \odot 0_V) \oplus (\lambda \odot 0_V),$$

where the first equality follows from axiom (3) and the second from axiom (7). Proposition 2.16 applied to the case $0' = z = \lambda \odot 0_V$ then yields $\lambda \odot 0_V = 0_V$.

Statement (4) follows from statements (2) and (3) with $x = 0_V$ and $\lambda = -1$.

2.3.3 False. For the vector $x'=(-1)\odot x$ we do indeed have

$$x + x' = (1 + (-1)) \odot x = 0 \odot x,$$

where the 0 obviously denotes the scalar zero in F. However, we used axiom (4) to prove $0 \odot x = 0_V$, so without axiom (4) we can not conclude $x \oplus x' = 0_V$.