
Uitwerkingen werkcollege 3.

2.1.2 First we need to check that if we “add” two elements x, y ∈ V with the
usual operation ⊕, we actually get an element of V . This is indeed the case
because if x = (x1, x2, x3) and y = (y1, y2, y3) satisfy x1 + x2 + x3 = 0 and
y1 +y2 +y3 = 0, then the sum z = x⊕y equals (z1, z2, z3) with zi = xi +yi
for 1 ≤ i ≤ 3, and we have

z1 + z2 + z3 = (x1 + y1) + (x2 + y2) + (x3 + y3)

= (x1 + x2 + x3) + (y1 + y2 + y3) = 0 + 0 = 0,

so also z ∈ V .
We also need to check that every scalar multiple of any element x =

(x1, x2, x3) ∈ V is again contained in V . This is indeed the case, because
for every λ ∈ R we have λ � x = (λx1, λx2, λx3) and if x1 + x2 + x3 = 0,
then λx1 + λx2 + λx3 = λ(x1 + x2 + x3) = 0, so λ� x ∈ V .

Now that we know that the operations ⊕ and � are indeed well defined,
we can check whether together with the zero 0V = (0, 0, 0), they satisfy the
eight axioms of Definition 2.1.

To check that for all x, y ∈ V we have x ⊕ y = y ⊕ x, we note that we
already knew this for all x, y ∈ R3, so it certainly holds for all x, y ∈ V ,
because V is a subset of R3. Similarly, all axioms, except for the fourth,
hold for all elements in R3, so certainly for all elements in V .

It remains to check the fourth axiom. For x = (x1, x2, x3) ∈ V we define
x′ = (−x1,−x2,−x3), of which the sum of coordinates is (−x1) + (−x2) +
(−x3) = −(x1 + x2 + x3) = 0, so we have x′ ∈ V . Of course, we have
x ⊕ x′ = (x1 + (−x1), x2 + (−x2), x3 + (−x3)) = (0, 0, 0) = 0V , so also
the fourth axiom is satisfied. It follows that V , together with the usual
coordinate-wise addition and scalar multiplication and 0V as zero vector is
indeed a vector space.

2.1.3 In this case, V is not a vector space, because it is not closed under addition.
To show this, it suffices to give two elements x, y ∈ V with x⊕ y 6∈ V . For
example, the elements x = (1, 0, 0) and y = (0, 1, 0) are contained in V , but
x ⊕ y = (1, 1, 0) is not. [Alternatively, one can show that V is not closed
under scalar multiplication: if x ∈ V , then 2x 6∈ V . Or one notes that the
suggested zero vector is not contained in V .]

2.1.4

a b a� b a⊕ b
F F × ×
F V V ×
V V × V

2.2.9 (3) Yes, all axioms can be checked.
(4) Yes, all axioms can be checked.
(5) No, the sum of two elements is not even in V , and the scalar multiples

(by scalars other than 1) are not in V either, so we have no addition
and scalar multiplication on V . So we can not even phrase any of the
axioms, except for axiom (6).

(6) Yes, all axioms can be checked.
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(7) No, the sum of two elements is not even in V , and the scalar multiples
(by scalars other than 1) are not in V either, so we have no addition
and scalar multiplication on V . So we can not even phrase any of the
axioms, except for axiom (6).

2.2.10 By Lemma 1.25, the set a⊥ is closed under addition and scalar multiplica-
tion: for every x, y ∈ a⊥ and λ ∈ R, we have x ⊕ y ∈ a⊥ and λ � x ∈ a⊥.
Therefore, we do indeed have a well defined addition and scalar multipli-
cation on a⊥. As in Exercise 2.1.2, we note that all axioms except axiom
(4) state that some property has to hold for all vectors (or pairs or triples
of vectors) in a⊥ and perhaps all scalars (or pairs of scalars). Given that
we already know these properties hold for all (pairs or triples of) vectors
in Rn, they certainly hold for all (pairs or triples of) vectors in a⊥. As for
axiom (4), for every x ∈ a⊥ we know that x′ = (−1) · x is contained in a⊥,
and x + x′ = (1 + (−1))x = 0 · x = 0, so also axiom (4) is satisfied. This
finishes the proof. Cf. Lemma 3.2.

2.2.12 For f and g in V X = Map(X,V ) we define f + g in V X by defining, for
all x in X, (f + g)(x) = f(x) + g(x) (pointwise addition). Similarly, we
define, for f in V X and for λ in F , and for all x in X, (λ·f)(x) = λ·(f(x))
(pointwise multiplication). One can then check that all 8 axioms for vector
spaces hold in this case.

2.2.14 Laat a = (an)n≥0 en b = (bn)n≥0 elementen van S zijn. De termsgewijze
som a+ b is dan de rij gegeven door (a+ b)n = an + bn. Voor deze rij geldt,
voor alle n ≥ 0:

(a+ b)n+2 = an+2 + bn+2 = (an+1 + an) + (bn+1 + bn) =

= (an+1 + bn+1) + (an + bn) = (a+ b)n+1 + (a+ b)n,

dus is a + b ook in S. Laat nu a = (an)n≥0 in S en λ ∈ R. Dan is het
termsgewijze product λ·a gegeven door (λ·a)n = λ·an. Voor deze rij geldt,
voor alle n ≥ 0:

(λ·a)n+2 = λ·an+2 = λ·(an+1 + an) =

= λ·an+1 + λ·an = (λ·a)n+1 + (λ·a)n,

dus is λ·a ook in S. We moeten nu laten zien dat S, met deze optelling
en scalairvermenigvuldiging, een R-vectorruimte is. Aan alle 8 axioma’s
behalve de 4-de is voldaan omdat de gevraagde gelijkheden termsgewijs
gelden (we kunnen ook zeggen dat S een deelverzameling is van Map(N,R),
en dat de gevraagde gelijkheden gelden in deze grotere vectorruimte). Voor
axioma 4: gegeven a = (an)n≥0, laat a′ = (−1)·a. Dan is a′ in S (zie
hierboven, met λ = −1), en geldt a+ a′ = 0.

Opmerking: met de kennis van Hoofdstuk 3 kunnen we zeggen dat S een
deelruimte is van Map(N,R) en dus een vectorruimte is.

2.3.2 For (3), we have

λ� 0V = λ� (0V ⊕ 0V ) = (λ� 0V )⊕ (λ� 0V ),

where the first equality follows from axiom (3) and the second from ax-
iom (7). Proposition 2.16 applied to the case 0′ = z = λ � 0V then yields
λ� 0V = 0V .

Statement (4) follows from statements (2) and (3) with x = 0V and
λ = −1.
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2.3.3 False. For the vector x′ = (−1)� x we do indeed have

x+ x′ = (1 + (−1))� x = 0� x,
where the 0 obviously denotes the scalar zero in F . However, we used
axiom (4) to prove 0� x = 0V , so without axiom (4) we can not conclude
x⊕ x′ = 0V .


