Uitwerkingen werkcollege 14.

11.2.1 The constant term of the characteristic polynomial P_{A} is the value

$$
P_{A}(0)=\operatorname{det}(0 \cdot I-A)=\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)
$$

For the coefficient of t^{n-1}, we use induction. For $n=1$ this is trivially equal to $-\operatorname{Tr} A$, so assume $n>1$. We compute the determinant of $C=t I_{n}-A$ by expansion along the first row. We write $C=\left(c_{i j}\right)_{i, j}$ and get

$$
P_{A}(t)=\operatorname{det}\left(t I_{n}-A\right)=\operatorname{det} C=\sum_{j=1}^{n}(-1)^{1+j} c_{1 j} \cdot \operatorname{det} C_{1 j}
$$

where $C_{1 j}$ denotes the matrix obtained from C by deleting the first row and the j-th column. For $j>1$, the matrix $C_{1 j}$ contains only $n-2$ entries that are linear in t, while the rest of the entries are constant, so $\operatorname{det} C_{1 j}$ has degree at most $n-2$. This implies that the coefficient of t^{n-1} in P_{A} is equal to the coefficient of t^{n-1} in the term for $j=1$, which by the induction hypothesis is equal to

$$
\begin{aligned}
c_{11} \cdot \operatorname{det} C_{11} & =\left(t-a_{11}\right) \cdot \operatorname{det}\left(t I_{n-1}-A_{11}\right)=\left(t-a_{11}\right) \cdot P_{A_{11}}(t) \\
& =\left(t-a_{11}\right)\left(t^{n-1}-\operatorname{Tr}\left(A_{11}\right) t^{n-2}+\ldots\right)=t^{n}-\left(\operatorname{Tr} A_{11}+a_{11}\right) t^{n-1}+\ldots
\end{aligned}
$$

So the coefficient of t^{n-1} is $-a_{11}-\operatorname{Tr} A_{11}=-\operatorname{Tr} A$.
11.2.2 Here it is a good idea to choose a basis of \mathbb{R}^{3} that is adapted to the question. So take $v_{1} \in \mathbb{R}^{3}$ such that $V=v_{1}^{\perp}$, and let v_{2} and v_{3} form a basis of V, then, as V and $L\left(v_{1}\right)$ are complementary, v_{1}, v_{2} and v_{3} form a basis of \mathbb{R}^{3}. The matrix of s with respect to this basis is diagonal, with diagonal entries $(-1,1,1)$. Therefore, $P_{s}(t)=(t-1)^{2}(t+1)$.
11.2.3 (1) Characteristic polynomial is $t^{2}-4$.

Eigenvalues are 2 and -2 .
Basis of eigenspace for $\lambda=-2$ is $((1,-1))$.
Basis of eigenspace for $\lambda=2$ is $((1,-2))$.
(2) Characteristic polynomial is $(t-3)^{2}$.

Eigenvalue is 3.
Basis of eigenspace for $\lambda=3$ is $((1,2))$.
(3) Characteristic polynomial is $(t+1)(t-3)^{2}$.

Eigenvalues are -1 and 3 .
Basis of eigenspace for $\lambda=-1$ is $((1,0,-1))$.
Basis of eigenspace for $\lambda=3$ is $((2,0,-1),(0,1,0))$.
(4) Characteristic polynomial is $(t-2)^{3}$.

Eigenvalue is only 2.
Basis of eigenspace for $\lambda=2$ is $((1,-2,0),(0,0,1))$.
(5) Characteristic polynomial is $(t-1)^{2}(t-2)(t+3)$.

Eigenvalues are 1, 2, and -3 .
Basis of eigenspace for $\lambda=2$ is $((1,-1,0,0))$.
Basis of eigenspace for $\lambda=-3$ is $((0,0,0,1))$.
Basis of eigenspace for $\lambda=1$ is $((0,0,1,0))$.
(6) Characteristic polynomial is $(t-1)^{2}(t-2)^{2}$.

Eigenvalues are 1 and 2.
Basis of eigenspace for $\lambda=2$ is $((1,0,-2,0))$.
Basis of eigenspace for $\lambda=1$ is $((0,0,1,0))$.
11.3.1 For $k>0$ this was already proved in the text. For $k=0$ both sides are equal to I_{n}, so we may assume $k<0$. Then by Proposition 5.25 , the inverse of $P D P^{-1}$ is

$$
\left(P D P^{-1}\right)^{-1}=\left(P^{-1}\right)^{-1} D^{-1} P^{-1}=P D^{-1} P^{-1}
$$

Hence, we find

$$
\begin{aligned}
\left(P D P^{-1}\right)^{k} & =\left(\left(P D P^{-1}\right)^{-1}\right)^{-k}=\underbrace{\left(P D^{-1} P^{-1}\right)\left(P D^{-1} P^{-1}\right) \cdots\left(P D^{-1} P^{-1}\right)}_{-k} \\
& =P\left(D^{-1}\right)^{-k} P^{-1}=P D^{k} P^{-1} .
\end{aligned}
$$

11.3.2 (1) The first is not diagonalisable, because the only eigenvalue is 1 and the corresponding eigenspace is 1-dimensional, namely generated by $e_{1}=(1,0)$.

$$
\begin{gather*}
P=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \tag{2}\\
P=\left(\begin{array}{ccc}
1 & 1 & 0 \\
4 & 0 & 1 \\
-2 & 1 & -1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \tag{3}
\end{gather*}
$$

11.3.3 (1) Yes, by Proposition 11.25.

$$
P=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
1 & 0 \\
0 & -3
\end{array}\right)
$$

(2) Yes, by Proposition 11.25 .

$$
P=\left(\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -3
\end{array}\right)
$$

(3) Yes, by Proposition 11.25.

$$
P=\left(\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right)
$$

(4) No: only eigenvalue is 3 , with algebraic multiplicity 2 and geometric multiplicity 1.
(5) Yes.

$$
P=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

(6) No: only eigenvalue is 2 , with algebraic multiplicity 3 and geometric multiplicity 2.
(7) No: the geometric multiplicity of $\lambda=1$ is 1 and the algebraic multiplicity is 2 .
(8) No: the geometric multiplicity of $\lambda=1$ is 1 and the algebraic multiplicity is 2 .
11.3.11 Let ρ denote the rotation over θ. If $\rho(v)=\lambda v$ for some nonzero $v \in \mathbb{R}^{2}$ and some $\lambda \in \mathbb{R}$, then ρ sends the line $L=L(v)$ to itself, so the angle is either 0 or 180° (in the first case all eigenvalues are 1 , in the second case they are -1).
11.3.12 (1) Since all columns are the same, the column space $C\left(N_{n}\right)$ is generated by the vector $a=(1,1,1, \ldots, 1)$, so $\operatorname{rk} N_{n}=\operatorname{dim} C\left(N_{n}\right)=1$, and hence $\operatorname{dim} \operatorname{ker} N_{n}=n-\operatorname{rk} N_{n}=n-1$.
(2) If v is an eigenvector with eigenvalue λ, then $\lambda v=N_{n} v \in \operatorname{im} N_{n}=L(a)$, so λv is a multiple of a. Then either the eigenvalue λ is 0 , or we get $v \in L(a)$, say $v=\mu a$ for some $\mu \in \mathbb{R}$ and then $N_{n} v=\mu N_{n} a=\mu n a=n v$, so the eigenvalue λ is n.
(3) The corresponding eigenspaces are $E_{n}\left(N_{n}\right)=L(a)$ and $E_{0}\left(N_{n}\right)=\operatorname{ker} N_{n}$, which has dimension $n-1$. Hence, the dimensions of the eigenspaces add up to n, so N_{n} is diagonalisable.
(4) Since N_{n} is diagonalisable, the algebraic and geometric multiplicities of the eigenvalues 0 and n agree, so they are $n-1$ and 1 , repectively, so the characteristic polynomial is $P_{N_{n}}(t)=(t-n)(t-0)^{n-1}=t^{n}-n t^{n-1}$.
(5) Substituting $\lambda=1$ into $P_{N_{n}}$, we find
$\operatorname{det} M_{n}=\operatorname{det}\left(N_{n}-I_{n}\right)=\operatorname{det}\left(-I_{n}\left(I_{n}-N_{n}\right)\right)=\operatorname{det}\left(-I_{n}\right) \cdot \operatorname{det}\left(1 \cdot I_{n}-N_{n}\right)$
$=(-1)^{n} P_{N_{n}}(1)=(-1)^{n}(1-n)$.

