
Uitwerkingen werkcollege 14.

11.2.1 The constant term of the characteristic polynomial PA is the value

PA(0) = det(0 · I −A) = det(−A) = (−1)n det(A).

For the coefficient of tn−1, we use induction. For n = 1 this is trivially equal
to −TrA, so assume n > 1. We compute the determinant of C = tIn − A
by expansion along the first row. We write C = (cij)i,j and get

PA(t) = det(tIn −A) = detC =

n∑
j=1

(−1)1+jc1j · detC1j ,

where C1j denotes the matrix obtained from C by deleting the first row
and the j-th column. For j > 1, the matrix C1j contains only n− 2 entries
that are linear in t, while the rest of the entries are constant, so detC1j

has degree at most n− 2. This implies that the coefficient of tn−1 in PA is
equal to the coefficient of tn−1 in the term for j = 1, which by the induction
hypothesis is equal to

c11 · detC11 = (t− a11) · det(tIn−1 −A11) = (t− a11) · PA11(t)

= (t− a11)
(
tn−1 − Tr(A11)tn−2 + . . .

)
= tn − (TrA11 + a11)tn−1 + . . .

So the coefficient of tn−1 is −a11 − TrA11 = −TrA.

11.2.2 Here it is a good idea to choose a basis of R3 that is adapted to the question.
So take v1 ∈ R3 such that V = v⊥1 , and let v2 and v3 form a basis of V ,
then, as V and L(v1) are complementary, v1, v2 and v3 form a basis of R3.
The matrix of s with respect to this basis is diagonal, with diagonal entries
(−1, 1, 1). Therefore, Ps(t) = (t− 1)2(t+ 1).

11.2.3 (1) Characteristic polynomial is t2 − 4.
Eigenvalues are 2 and −2.
Basis of eigenspace for λ = −2 is

(
(1,−1)

)
.

Basis of eigenspace for λ = 2 is
(
(1,−2)

)
.

(2) Characteristic polynomial is (t− 3)2.
Eigenvalue is 3.
Basis of eigenspace for λ = 3 is

(
(1, 2)

)
.

(3) Characteristic polynomial is (t+ 1)(t− 3)2.
Eigenvalues are −1 and 3.
Basis of eigenspace for λ = −1 is

(
(1, 0,−1)

)
.

Basis of eigenspace for λ = 3 is
(
(2, 0,−1), (0, 1, 0)

)
.

(4) Characteristic polynomial is (t− 2)3.
Eigenvalue is only 2.
Basis of eigenspace for λ = 2 is

(
(1,−2, 0), (0, 0, 1)

)
.

(5) Characteristic polynomial is (t− 1)2(t− 2)(t+ 3).
Eigenvalues are 1, 2, and −3.
Basis of eigenspace for λ = 2 is

(
(1,−1, 0, 0)

)
.

Basis of eigenspace for λ = −3 is
(
(0, 0, 0, 1)

)
.

Basis of eigenspace for λ = 1 is
(
(0, 0, 1, 0)

)
.
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(6) Characteristic polynomial is (t− 1)2(t− 2)2.
Eigenvalues are 1 and 2.
Basis of eigenspace for λ = 2 is

(
(1, 0,−2, 0)

)
.

Basis of eigenspace for λ = 1 is
(
(0, 0, 1, 0)

)
.

11.3.1 For k > 0 this was already proved in the text. For k = 0 both sides are
equal to In, so we may assume k < 0. Then by Proposition 5.25, the inverse
of PDP−1 is(

PDP−1
)−1

= (P−1)−1D−1P−1 = PD−1P−1.

Hence, we find(
PDP−1

)k
=
((
PDP−1

)−1)−k
= (PD−1P−1)(PD−1P−1) · · · (PD−1P−1)︸ ︷︷ ︸

−k

= P (D−1)−kP−1 = PDkP−1.

11.3.2 (1) The first is not diagonalisable, because the only eigenvalue is 1 and
the corresponding eigenspace is 1-dimensional, namely generated by
e1 = (1, 0).

(2)

P =

(
1 2
2 3

)
and D =

(
2 0
0 3

)
(3)

P =

 1 1 0
4 0 1
−2 1 −1

 and D =

1 0 0
0 2 0
0 0 2


11.3.3 (1) Yes, by Proposition 11.25.

P =

(
1 1
1 2

)
and D =

(
1 0
0 −3

)
(2) Yes, by Proposition 11.25.

P =

 1 2 0
−1 −1 0
0 0 1

 and D =

1 0 0
0 2 0
0 0 −3


(3) Yes, by Proposition 11.25.

P =

(
1 1
−1 −2

)
and D =

(
−2 0
0 2

)
(4) No: only eigenvalue is 3, with algebraic multiplicity 2 and geometric

multiplicity 1.
(5) Yes.

P =

 1 2 0
0 0 1
−1 −1 0

 and D =

−1 0 0
0 3 0
0 0 3


(6) No: only eigenvalue is 2, with algebraic multiplicity 3 and geometric

multiplicity 2.
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(7) No: the geometric multiplicity of λ = 1 is 1 and the algebraic multi-
plicity is 2.

(8) No: the geometric multiplicity of λ = 1 is 1 and the algebraic multi-
plicity is 2.

11.3.11 Let ρ denote the rotation over θ. If ρ(v) = λv for some nonzero v ∈ R2

and some λ ∈ R, then ρ sends the line L = L(v) to itself, so the angle is
either 0 or 180◦ (in the first case all eigenvalues are 1, in the second case
they are −1).

11.3.12 (1) Since all columns are the same, the column space C(Nn) is generated
by the vector a = (1, 1, 1, . . . , 1), so rkNn = dimC(Nn) = 1, and
hence dim kerNn = n− rkNn = n− 1.

(2) If v is an eigenvector with eigenvalue λ, then λv = Nnv ∈ imNn = L(a),
so λv is a multiple of a. Then either the eigenvalue λ is 0, or we get
v ∈ L(a), say v = µa for some µ ∈ R and thenNnv = µNna = µna = nv,
so the eigenvalue λ is n.

(3) The corresponding eigenspaces are En(Nn) = L(a) and E0(Nn) = kerNn,
which has dimension n− 1. Hence, the dimensions of the eigenspaces
add up to n, so Nn is diagonalisable.

(4) Since Nn is diagonalisable, the algebraic and geometric multiplicities
of the eigenvalues 0 and n agree, so they are n−1 and 1, repectively, so
the characteristic polynomial is PNn

(t) = (t−n)(t−0)n−1 = tn−ntn−1.
(5) Substituting λ = 1 into PNn

, we find

detMn = det(Nn − In) = det(−In(In −Nn)) = det(−In) · det(1 · In −Nn)

= (−1)nPNn(1) = (−1)n(1− n).


