Uitwerkingen werkcollege 3.

2.1.2 Firstly note that for the zero vector $0_V = (0,0,0) \in \mathbb{R}^3$ we have that $0_V \in V$, as 0+0+0=0.

We need to check that if we "add" two elements $x,y \in V$ with the usual operation \oplus , we actually get an element of V. This is indeed the case because if $x=(x_1,x_2,x_3)$ and $y=(y_1,y_2,y_3)$ satisfy $x_1+x_2+x_3=0$ and $y_1+y_2+y_3=0$, then the sum $z=x\oplus y$ equals (z_1,z_2,z_3) with $z_i=x_i+y_i$ for $1\leq i\leq 3$, and we have

$$z_1 + z_2 + z_3 = (x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3)$$
$$= (x_1 + x_2 + x_3) + (y_1 + y_2 + y_3) = 0 + 0 = 0,$$

so also $z \in V$.

We also need to check that every scalar multiple of any element $x = (x_1, x_2, x_3) \in V$ is again contained in V. This is indeed the case, because for every $\lambda \in \mathbb{R}$ we have $\lambda \odot x = (\lambda x_1, \lambda x_2, \lambda x_3)$ and if $x_1 + x_2 + x_3 = 0$, then $\lambda x_1 + \lambda x_2 + \lambda x_3 = \lambda (x_1 + x_2 + x_3) = 0$, so $\lambda \odot x \in V$.

Now that we know that the operations \oplus and \odot are indeed well defined, we can check whether together with the zero $0_V = (0, 0, 0)$, they satisfy the eight axioms of Definition 2.1.

To check that for all $x, y \in V$ we have $x \oplus y = y \oplus x$, we note that we already knew this for all $x, y \in \mathbb{R}^3$, so it certainly holds for all $x, y \in V$, because V is a subset of \mathbb{R}^3 . Similarly, all axioms, except for the fourth, hold for all elements in \mathbb{R}^3 , so certainly for all elements in V.

It remains to check the fourth axiom. For $x=(x_1,x_2,x_3)\in V$ we define $x'=(-x_1,-x_2,-x_3)$, of which the sum of coordinates is $(-x_1)+(-x_2)+(-x_3)=-(x_1+x_2+x_3)=0$, so we have $x'\in V$. Of course, we have $x\oplus x'=(x_1+(-x_1),x_2+(-x_2),x_3+(-x_3))=(0,0,0)=0_V$, so also the fourth axiom is satisfied. It follows that V, together with the usual coordinate-wise addition and scalar multiplication and 0_V as zero vector is indeed a vector space.

- 2.1.3 In this case, V is not a vector space, because it is not closed under addition. To show this, it suffices to give two elements $x,y\in V$ with $x\oplus y\not\in V$. For example, the elements x=(1,0,0) and y=(0,1,0) are contained in V, but $x\oplus y=(1,1,0)$ is not. [Alternatively, one can show that V is not closed under scalar multiplication: if $x\in V$, then $2x\not\in V$. Or one notes that the suggested zero vector is not contained in V.]
- 2.1.4

a	$\mid b \mid$	$a \odot b$	$a \oplus b$
F	F	×	×
F	V	V	×
V	V	×	V

- 2.2.9 (3) Yes, all axioms can be checked.
 - (4) Yes, all axioms can be checked.
 - (5) No, the sum of two elements is not even in V, and the scalar multiples (by scalars other than 1) are not in V either, so we have no addition and scalar multiplication on V. So we can not even phrase any of the axioms, except for axiom (6).

- (6) Yes, all axioms can be checked.
- (7) No, the sum of two elements is not even in V, and the scalar multiples (by scalars other than 1) are not in V either, so we have no addition and scalar multiplication on V. So we can not even phrase any of the axioms, except for axiom (6).
- 2.2.10 By Lemma 1.25, the set a^{\perp} is closed under addition and scalar multiplication: for every $x, y \in a^{\perp}$ and $\lambda \in \mathbb{R}$, we have $x \oplus y \in a^{\perp}$ and $\lambda \odot x \in a^{\perp}$. Therefore, we do indeed have a well defined addition and scalar multiplication on a^{\perp} . As in Exercise 2.1.2, we note that all axioms except axiom (4) state that some property has to hold for all vectors (or pairs or triples of vectors) in a^{\perp} and perhaps all scalars (or pairs of scalars). Given that we already know these properties hold for all (pairs or triples of) vectors in \mathbb{R}^n , they certainly hold for all (pairs or triples of) vectors in a^{\perp} . As for axiom (4), for every $x \in a^{\perp}$ we know that $x' = (-1) \cdot x$ is contained in a^{\perp} , and $x + x' = (1 + (-1))x = 0 \cdot x = 0$, so also axiom (4) is satisfied. This finishes the proof. Cf. Lemma 3.2.
- 2.2.12 For f and g in $V^X = \operatorname{Map}(X, V)$ we define f + g in V^X by defining, for all x in X, (f + g)(x) = f(x) + g(x) (pointwise addition). Similarly, we define, for f in V^X and for λ in F, and for all x in X, $(\lambda \cdot f)(x) = \lambda \cdot (f(x))$ (pointwise multiplication). One can then check that all 8 axioms for vector spaces hold in this case.
- 2.2.14 Laat $a=(a_n)_{n\geq 0}$ en $b=(b_n)_{n\geq 0}$ elementen van S zijn. De termsgewijze som a+b is dan de rij gegeven door $(a+b)_n=a_n+b_n$. Voor deze rij geldt, voor alle $n\geq 0$:

$$(a+b)_{n+2} = a_{n+2} + b_{n+2} = (a_{n+1} + a_n) + (b_{n+1} + b_n) =$$
$$= (a_{n+1} + b_{n+1}) + (a_n + b_n) = (a+b)_{n+1} + (a+b)_n,$$

dus is a+b ook in S. Laat nu $a=(a_n)_{n\geq 0}$ in S en $\lambda\in\mathbb{R}$. Dan is het termsgewijze product $\lambda\cdot a$ gegeven door $(\lambda\cdot a)_n=\lambda\cdot a_n$. Voor deze rij geldt, voor alle $n\geq 0$:

$$(\lambda \cdot a)_{n+2} = \lambda \cdot a_{n+2} = \lambda \cdot (a_{n+1} + a_n) =$$

= $\lambda \cdot a_{n+1} + \lambda \cdot a_n = (\lambda \cdot a)_{n+1} + (\lambda \cdot a)_n$,

dus is $\lambda \cdot a$ ook in S. We moeten nu laten zien dat S, met deze optelling en scalairvermenigvuldiging, een \mathbb{R} -vectorruimte is. Aan alle 8 axioma's behalve de 4-de is voldaan omdat de gevraagde gelijkheden termsgewijs gelden (we kunnen ook zeggen dat S een deelverzameling is van $\mathrm{Map}(\mathbb{N}, \mathbb{R})$, en dat de gevraagde gelijkheden gelden in deze grotere vectorruimte). Voor axioma 4: gegeven $a=(a_n)_{n\geq 0}$, laat $a'=(-1)\cdot a$. Dan is a' in S (zie hierboven, met $\lambda=-1$), en geldt a+a'=0.

Opmerking: met de kennis van Hoofdstuk 3 kunnen we zeggen dat S een deelruimte is van $Map(\mathbb{N}, \mathbb{R})$ en dus een vectorruimte is.

2.3.2 For (3), we have

$$\lambda \odot 0_V = \lambda \odot (0_V \oplus 0_V) = (\lambda \odot 0_V) \oplus (\lambda \odot 0_V),$$

where the first equality follows from axiom (3) and the second from axiom (7). Proposition 2.17 applied to the case $0' = z = \lambda \odot 0_V$ then yields $\lambda \odot 0_V = 0_V$.

Statement (4) follows from statements (2) and (3) with $x=0_V$ and $\lambda=-1$.

For statement (6), let $\lambda \in F$ and $x \in V$, then we have

$$\begin{aligned} -(\lambda\odot x) &= (-1)\odot(\lambda\odot x) & \text{by prop } 2.20(2) \\ &= (-1\cdot\lambda)\odot x & \text{by distributivity, axiom } 5 \\ &= (-\lambda)\odot x \end{aligned}$$

and

$$\begin{array}{ll} (-\lambda)\odot x = (-1\cdot\lambda)\odot x \\ &= (\lambda\cdot-1)\odot x \\ &= \lambda\odot (-1\odot x) \end{array} \quad \text{by commutativity in field } F \\ &= \lambda\odot (-1\odot x) \qquad \text{by distributivity, axiom 5} \\ &= \lambda\odot (-x) \qquad \text{by prop 2.20(2).} \end{array}$$

For statement (7), let $x, y, z \in V$. Suppose $z = x \ominus y$, then

$$z \oplus y = (x \ominus y) \oplus y = (x \oplus (-y)) \oplus y = x \oplus ((-y) \oplus y) = x \oplus 0_V = x.$$

Suppose $x = y \oplus z$, then

$$x\ominus y=(y\oplus z)\ominus y=(z\oplus y)\ominus y=(z\oplus y)\oplus (-y)=z\oplus (y\oplus (-y))=z\oplus 0_V=z.$$

2.3.3 False. For the vector $x' = (-1) \odot x$ we do indeed have

$$x + x' = (1 + (-1)) \odot x = 0 \odot x,$$

where the 0 obviously denotes the scalar zero in F. However, we used axiom (4) to prove $0 \odot x = 0_V$, so without axiom (4) we can not conclude $x \oplus x' = 0_V$.