Uitwerkingen werkcollege 9.

7.1.1 (1) Yes. (2) No.
7.1.4 Let A be the 5×6 matrix with v_{1}, \ldots, v_{6} as columns. Then there are more columns than rows, so not every column of a row echelon form for A contains a pivot, so the kernel of f_{A} is nontrivial, so the elements v_{1}, \ldots, v_{6} are linearly dependent by Proposition 7.10 and/or Corollary 7.11. See also Exercise 6.3.5.
7.1.8 Suppose $0 \leq j \leq n$. For all $0 \leq i<j$ we have $f_{i}\left(a_{j}\right)=0$, so for every linear combination f of $f_{0}, f_{1}, \ldots, f_{j-1}$ we have $f\left(a_{j}\right)=0$. The function f_{j} satisfies $f_{j}\left(a_{j}\right)=1$, so it is not a linear combination of $f_{0}, f_{1}, \ldots, f_{j-1}$. This holds for all j, so by part (1) of Proposition 7.15, the sequence $\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ is indeed linearly independent.
7.2.1 Many answers are possible in this case. While one could use Proposition 7.22 , we will use Proposition 7.26 (or Lemma 7.24). We don't list the matrices and their row echelon forms here, but only the conclusion.
(1) $\left(v_{1}, v_{2}\right)$, which generates \mathbb{R}^{2}.
(2) $\left(v_{1}, v_{2}\right)$, note that $5 v_{3}=v_{1}+2 v_{2}$, so $v_{3} \in L\left(v_{1}, v_{2}\right)$.
(3) $\left(v_{1}, v_{2}\right)$, note that $4 v_{3}=v_{1}+v_{2}$, so $v_{3} \in L\left(v_{1}, v_{2}\right)$.
(4) $\left(v_{1}, v_{2}\right)$, note that $v_{3}=-v_{1}+2 v_{2} \in L\left(v_{1}, v_{2}\right)$.
(5) $\left(v_{1}, v_{2}, v_{3}\right)$.
7.2.3 We select the columns of A corresponding to the columns of a row echelon form of A that contain a pivot (see Proposition 7.26). In Exercise 6.3.3 we have seen row echelon forms for each of the four matrices, so we can choose:
(1) for the first matrix: the first two columns,
(2) for the second (the 3×3 matrix): the first two columns,
(3) for the third (the 3×5 matrix): the first, second, and fourth column,
(4) for the last matrix: the first, second, and fourth column.
7.2.4 None of the first three polynomials is a linear combination of the previous, because their degrees are increasing. The polynomial f_{4} is also not a linear combination of the previous. (Why? Check this with a computation!) The polynomials f_{5} and f_{6} are linear combinations of the previous, as we have $f_{5}=f_{1}+f_{2}-f_{3}+f_{4}$ and $f_{6}=f_{1}+f_{3}-f_{4}$. Therefore, by Proposition 7.24 , the polynomials $f_{1}, f_{2}, f_{3}, f_{4}$ form a basis for U.

Andere oplossing. Merk op dat alle f_{i} in $\mathbb{R}[x]_{4}$ zitten. Gebruik de basis $\left(1, x, x^{2}, x^{3}, x^{4}\right)$ van $\mathbb{R}[x]_{4}$ om de f_{i} als elementen van \mathbb{R}^{4} te schrijven. Gebruik nu Remark 7.27: zet de f_{i} als kolommen in een matrix A, kijk waar de spillen staan in de ge-rij-trap-vormde matrix A^{\prime}, en neem die f_{i}. Dat geeft dat $f_{1}, f_{2}, f_{3}, f_{4}$ een basis van U vormen.
7.3.1 As in Example 7.31, we look at the matrix whose columns are the coefficients of the polynomials f_{1}, f_{2}, f_{3} and the generators $1, x, x^{2}, x^{3}, x^{4}$, which is

$$
A=\left(\begin{array}{cccccccc}
2 & -3 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

A row echelon form of this matrix is

$$
A^{\prime}=\left(\begin{array}{cccccccc}
1 & 2 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & \frac{1}{7} & -\frac{1}{7} & 0 & \frac{2}{7} & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The first three columns of A^{\prime} contain a pivot, so they are indeed linearly independent. The other two pivots, in the fifth and eighth column, correspond to x and x^{4}, so we can extend to a basis $f_{1}, f_{2}, f_{3}, x, x^{4}$.
7.3.3 (1) The hyperplane V is equal to the kernel of the 1×4 matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)
$$

which is in row echelon form. By Proposition 7.22, a basis for this kernel is given by the elements obtained from Proposition 6.17, which are
$w_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right), \quad w_{3}=\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right), \quad$ and $\quad w_{4}=\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$.
Hence, the dimension of V is 3 , corresponding to the number of columns of A without a pivot.
$(2) \&(3)$ We have $\left\langle a, v_{1}\right\rangle=\left\langle a, v_{2}\right\rangle=0$, so $v_{1}, v_{2} \in a^{\perp}=V$. The matrix that has $v_{1}, v_{2}, w_{2}, w_{3}, w_{4}$ as columns is

$$
B=\left(\begin{array}{ccccc}
2 & -1 & -1 & -1 & -1 \\
-3 & 3 & 1 & 0 & 0 \\
-1 & 2 & 0 & 1 & 0 \\
2 & -4 & 0 & 0 & 1
\end{array}\right)
$$

Note that the last three columns generate V by part (1). A row echelon form for B is

$$
B^{\prime}=\left(\begin{array}{ccccc}
1 & -2 & 0 & -1 & 0 \\
0 & 1 & -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

The first two columns contain a pivot, so v_{1} and v_{2} are indeed linearly independent (which could also be seen very quickly, as it is just two vectors and neither is a scalar multiple of the other). The only other column with a pivot is the fourth, which corresponds with w_{3}, so we can extend $\left(v_{1}, v_{2}\right)$ to a basis $\left(v_{1}, v_{2}, w_{3}\right)$ of V.
7.3.5 If all sequences of linearly independent elements have length bounded by m, then V is finitely generated by Proposition 7.53 , so it has a finite basis and dimension, say $n=\operatorname{dim} V$. The n elements of a basis are linearly independent, so we find $n \leq m$ by the assumption.

