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Canonical Height Pairings via Biextensions

B. Mazur and J. Tate

To L.R. Shafarevich

The object of this paper is to present the foundations of 4 theoryat
p-adic-valued height pairings
*) A(K) X A'(K) - @,

where A is a abelian variety over a global ficld K, and A’ is its dual, We
say “pairings” in the plural because, in contrast to the classical theory
of R-valued) canonical height, there may be many canonica| p-adic valued
pairings: as we explain in § 4, up to nontrivial scalar multiple, they are in
one-to-ornc correspondence with Zp-extensions L/K whose ramified primes
are [inite in number and are primes of ordinary reduction (1.1) for A.

When A also has good reduction at the primes of ramification for L/I¢,
then a different method, introduced by Schneider (cI. [22] for the case of the
cyclotomic Z,-extension) enables one to associate to L/K a p-adic valued
pairing (*). We show this to be the same as our pairing.

Our method for the construction of (he pairing is first to express the
duality between A and A’ via the “canonical biextension” of (A, A') by 6,,,
and then to develop a theory of “canonijcal local splittings” of Liextensions.
Our pairings are then defined in a manner analogous to Bloch's definition
of the elassical R-valued pairing. Whercas for Bloch it sullices to split
certain local extensions, to obtain uniqueness we must ask for an especially
coherent family of splittings of the local extensions, i.c., a splitting of the
local biextension.

We ireat simultaneously the R-valued and p-adic valucd theories, and
express our results in a “uniform” wanner in terms of the notion of a Y-
valued canonical pairing for a general value group Y satislying some axioms.

The connection between biextensions and heights is, to be sure, not
surprising.

Firstly, Zarhin [24] pointed out that arbitrary (not neccssarily canonical)
splittings of the canonical biextension are cquivalent to Néron type pairings
between zero cycles and divisors.

Secoudly, bicxtensions have been used to define theta (and sigma-) func-
tions, as is explained of Breen [5] and in a manuseript in preparation by
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Norman [19]. Both of these authors point out that, although the concept of
biextensions is not explicitly mentioned in the theories of p-adic thety func-
tions of Mumford, and of Barsotti [2] (see also Cristante [6]) it is direct)
related to these theories (via the theorem of the cube). One might als, t;
to relate Néron’s approach to p-adic theta functions 16], [17], [18) directly
to biextensions.

Thirdly, the theory of p-adic heights for elliptic curves of complex my].
tiplication (and p a prime of ordinary reduction) has been developed by
Perrin-Riou [20] and Bernardi [4], using a p-adic version of the sigma.
function. Here the p-adic sigma-function plays a role analogous to that of
the classical sigma-function in Néron's theory [15] for archimedean primes,

Néron has also developed a theory of p-adic valued height pairings ys
ing his p-adic theta functions [18]. In the case of elliptic curves of com-
plex multiplication, an explicit connection between Néron's definition and
Bernardi’s has not yet been made (to our knowledge). What is the relation
(if any) between Néron's p-adic height and ours?

Since the explicit expression for the local terms of our canonical p-
adic pairing involves the canonical p-adic theta functions (of Mumford
and DBarsotti), we would find it useful to have a practical algorithm for
computing these functions. In a subsequent paper we will discuss this issue
in the case of elliptic curves.

In this connection, one should also note that the beginnings of a (mod p)-
valued theory of height for general elliptic curves (with ordinary reduction
at p) can be found in [21].

Our construction of p-adic valued canonical heights requires ordinary
reduction at the primes of ramification of the chosen Z,-extension. Can
one find a generalization or replacement of our construction valid for all
Zy-extensions? For elliptic curves with complex multiplication, B. Gross has
some ideas on this; see J. Oesterlé, Construction de hauteurs archimediennes
et p-adiques suivant la méthode de Bloch, p. 175-192, in Séminaire de
Theorie des Nombres (Séminaire Delange-Pisot-Poitou), Paris, 1980-81;
Progress in Math., Vol. 22, Birkhiuser Boston, Basel, Stuttgart, 1982.

We are grateful to M. Artin, L. Breen, J. Coates, L. Moret-Bailly,
P. Norman and B. Perrin-Riou for pleasant and informative conversa-
tions concerning algebraic spaces, biextensions, theta-functions, and p-adic
heights,

We also thank O. Gabber for providing us with significant help in work-
ing out §5.
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§ 1. Local Splittings

L(-at, K be a field complete with respect to a place v which is either
archimedean or discrete. If v s discrete, let 0 = Ox denote the ring of
v-integers in K, 7 a prime element in o and k = 0/70 the residue field.

If A)x is an abelian variety over K, and v is discrete, we denote by A
(or sometimes: Ajp) the Néron model of A /K over 0. If v is archimedean
we let A denote Ak i

In the non-a::chimef!ean case, A° (or Af9g) denotes the connected com-
ponent of zero in A, i.e., the open subgroupscheme of A}u whose closed

fiber Ag is connected. If Ujo is any scheme over 0, its closed fiber U Xpk
is denoted Up.

(1.1) Ordinary abelian varieties.

A and A;K are called ordinary if v s discrete, the characteristic of k
is £ 0, and the special fiber of A satisfies the following equivalent condi-
tions.

(i) The formal completion Aé of Ag at the origin is of multiplicative
type, i.e., is isomorphic to a product of copies of G/ over the algebraic
closure k of k.

(ii) For p = chark, the connected component of the kernel of the
homomorphism p: Ag — Aj is the dual of an étale group scheme over k.

(iii) Ag is an extension of an ordinary abelian variety by a torus Tk

If L/K is a finite field extension and Ak is ordinary, so is Ay and
formation of A° commutes with the base change of rings 0x — 0.

If A;k is ordinary, then Ak has good reduction over k (equivalently:
Ajp is an abelian scheme) if an only if T4 = 0.

(1.2) Exponents.

By the ezponent of a finite abelian group G we mean the smallest integer
m > 0 such that mG = 0.

In this paragraph, suppose that v is discrete. Let ma = my k denote
the exponent of Ag(k)/Ag(k). Now suppose that k is finite. Let Ta denote
the “maximal torus” in Ao which exists by, e.g., [SGA 3] exposé XIV, Thm.
L.L1. Let ny = n4/x denote the exponent of AJ(k)/Ta(k).

We refer to the numbers m4 and ny as the ezponents of A.



198 MAZUR AND TATE

The exponents are sensitive to isogenous change of A.

As for their dependence on the base field K, majk: admits a finite
upper bound for all finite unramified eztensions K'/K, while 4/ is
independent of K’ provided A is ordinary and K'/K is a finite totally
ramified extension. If we drop the assumption that A be ordinary, then
n4 k' admits a [inite upper bound for all finite totally ramified extensions
K'|K.

(1.3) Biextensions and paired abelian varieties.

For an introduction to the concept of bicxtension, we suggest reading §2
and §3 of (12]. For a fuller treatment of this notion, see exposés VII and
VIII of [SGA T7I]. A useful and pleasantly written introduction to this fuller
treatment may be found in the first 51 pages of §1 of [5].

Let A’ denote the dual of A/ and E%y the canonical biextension of
(A, A k) by Gk expressing the duality ([SGA 7 1) Exposé VII, 2.9).
If v is archimedean, let E4 denote the canonical biextension E‘;‘K. If v is
discrete, let 4 (or E":‘n) denote the canonical biextension of (A2, A’) by
G,n/0, i-e., the unique such biextension whose general fiber is L7y (whose
existence and uniqueness follow from [SGA 7 1] ixposé VII, 7.1b).

Il Bk is any abclian variety, to give a biextension Ey of (A/x,Byk)
by G/ is cquivalent to giving 2 K -homomorphism X: Byx — A’ g (and
Bk is the pullback of E‘}‘K by (1,))), or to giving a K -homomorphism
X' —vA;KB‘}K (the dual of X).

Again, if v is archimedean, lect E denote Iy, while if v is discrete, E
(or E/g) will denote the pullback of E‘?n, viewed as biextension of (A°, B)

The abelian varicties Ak, Bk will be said to be paired, if a bicx-
tension E;g of (A, Byx) by Gn/k (cquivalently: a K -homomorphism
A B;K '—'A?K) is fixed.

In what follows, we suppose Ak, B/k are paired abelian varieties over
K, with E i the biextension expressing the pairing.

In all cases, archimedean or non-archimedean, the set I(K) of points
of E with coordinates in K is a set theoretical biextension of the groups
(A(K), B(K)) by Gm(K) = K*. Our aim is Lo introduce canonical split-
tings of biextensions obtained from this one via various types of homomor-
phisms p: K* — Y.



(1.4) p-splittings
Let U, V, W, and Y be abelian groups, X a biextention of (U, V)by W
and o W—Y 2 homomorphism. A p-splitting of X is a map

P: X —Y
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such that

() lw+z)=pw)+ ) forweW,z€X.
(ii) For each u € U (resp. v € V) the restriction of ¢ to 4 X (resp. X,)
is a group homomorphism. .

(Iere oX (resp. X,) denotes the part of X above {u} X V (resp.
U X {v}) and is a group extension of V (resp. U) by W.) Note that we are
expressing the action of W on X additively. We will continue to do so even
when W = G-

(1.5) Canonical p-splittings.
Let Y be an abclian group and p: K*—Y a homomorphism.

Theorem. There ezists a canonical p-splitting!
¥,: E(K)—Y,

in the following three cases:

(1.5.1) v is archimedean and p(c) = 0 Jor ¢ such that lels = 1.

(1.5.2) v 1s discrete, p is unramified (i.c., p(0*) = 0), and Y is uniquely
divisible by ma-

(1.5.3) v 1s discrete, k is finite. A is ordinary, and Y is uniquely divisible

by mampnans.
If both (1.5.2) and (! 5.3) hold, they yield the same ¥,.
The image of ¥, satisfics the following inclusion relations:

p(K*) in case (1.5.1)

‘ 0, (B(K)) C § mzPlK") in case (1.5.2)
I '—“l;p(K') ¥ mlT;r.;p[U' ), in case (1.5.3).

17he propertics characlerizing this p-splitling uniquely are explained in (1.9) below.
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Before beginning the proof of the thcorem, we give some lemmas on
set-theoretical biextensions. Let U, V, W and X be as in (1.4), i.e, X a
biextension of (U, V') by W. For integers m and n we define a map

(mn): X — X

which for each (u,v) € U X V takes the fiber ,X, of X over (u,v) to the
fiber myXny. The map (m, 1) is defined as multiplication by m in the group
X, for each v € V, the map (1,n) is defined as multiplication by n in the
group X for each u € U, and finally,

fmn) 9 (o, 1) 0 (1, ) = (1, m) 0 e, 1);

the commutativity of (1,n) and (m, 1) results from the compatibility axiom
for the two laws of composition in a biextcnsion. We have the rules

(my,n;)(m,n) = (mym,nyn)

and
(m,n)(z + w) = (m,n)z + mnw forwe W.

If p: W—Y is a homomorphism and ¥ is a p-splitting, then
¥((m, n)z) = mn ¢(z).

In particular, if Y is uniquely divisible by m and n, then we have

Y(z) = ;ul—n-1,b((m, n)z).

This leads to

(1.6) Lemma. Suppose U° and V° are subgroups of U and V', and that
m and n are integers > 0 such that mU C U° and nV C V°. Let X° be
the part of X lying over U° X V° and let p: W—Y be a homomorphism
of W into a group Y which 13 uniquely divisible by mn. Then a p-splitting
Yo: X°— Y eztends uniquely to a p-splitting ¢ of X.

Indeed (m,n)X C X°. Hence, if ¥ extends 1, we must have
1

mn

Y(z) = Yo((m, n)z).
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On the other hand, it is easy to check that this f
’ lad e
v on all of X, il ¥, is a p-splitting of X°. TS (e Pl

Another case of unique extendibility of p-splittings is given by

(1.7) Lemma. Suppose W’ is a subgrou
: p of W and X'
X such that X' is a biextension of (U,V) by W'. Let p: Wa w:,“;e 0‘{
homomorphism and let p’' = p | W'. A p’-splitting ¢ i :
. plitiin w
to a p-splitting ¥ of W. gy’ of W' extends uniquely

Le:s W = U,(wi + W’) be the expression of W as disjoint union of cosets
of W'. Then X = UJ(wi + X') is a disjoint union because this is true on
each fiber over U X V. If z = w; + 2’ € w; + X' and 9 extends ¢', we
must have '

W(z) = p(w;) + ¥'(z').

On the other hand, it is easy to check that this formula defines a p-splitting
¥ of X, if ¢/ is a p'-splitting of X"

(1.8) Proposition. Suppose U and V are compact topological abelian
groups and X a topological bicziension of (U,V) by R, such that the projec-
tion pr: X — U X V has local sections. Then X has a unique coniinuous

splitting ¥: X — R.

Since the space of points of a projective variety over a locally compact
field is compact, an immediate conscquence of 1.8 is:

(1.8.1) Corollary. Define v: K*—R by v(z) = —log|z|. If K 12
locally compact, then E(K) has a unique v-splitting which is continuous
Jrom the v-topology in E(K) to the usual topology in R.

Proof of 1.8.  Since the projection X — U X V has continuous local
sections and its fiber is real affine 1-space, we can usc a partition of unity
of U X V to obtain a continuous global section s: U X vV —X.

Unicity: If ¥, and ¥ are two splittings, then (Y1—tp)osisa continuous
biadditive map of U X V into R. The image of such a map is bounded and

closed under multiplication by 2, so is 0.
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Ezistence: Define fo: X — R by
fotz) =I— a(pr(z)).

It is easy to check that

¥(=z) deln p im_ 2%(!0(2“,1)::) thm. o lim_ 5!;—]0((1,2"):)

is the desired splitting.

(1.9) Reduction of the theorem of (1.5) to §5.
We treat the three cases separately.

Case (1.5.1). (v is archimedean and p(c) = 0 if lely = 1.) Then
K =R or C, and the homomorphism v: K* — R defined by v(c) = — log|c|
is surjective. Since p(c) depends only on v(c), it follows that there is a
(unique) homomorphism p;: R— Y such that p(c) = pi(v(c)) for c€ K.
We put then

Yo(z) = p1(%u(2)) for z € E(K),

where

Yy E(K)—R

is the unique v-splitting of E(K) which is continuous (cf. 1.8.1). Clearly,
¥o(E(K)) C p(K*).

Case (1.5.2). (v is discrete, p is unramified (i.e., p(0*) = 0), and YV
is uniquely divisible by m ). Since A°(0) is the subgroup of A(s) = A(K)
consisting of those points P € A(0) whose reduction mod = is contained in
A°(k), we have m, - A(K) C A°(0). Let E°(K) denote that part of E(K)
which lies over A°(0) X B(IK). We have then a tower of Lhree biextensions
as follows:

2. A % il K
n n n
(o) C E°(K) C E(K)

! il !

A°(0) X B()) = A°0) X B(K) C A(K) X B(K)

Since p(0*) = 0, the constant function 0 (i.e., neutral element in Y)is a
(o | 0*)-splitting of E(0). Applying (1.7) with W’ = 0* and W = K*, then
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(1.8) with U° = A°(0), U = A(K), V = V° = B(K), we sce that this
(p | 0°)-splitting of [5(0) extends uniquely to E(K). We can therefore, and
do, define in this case ¥, to be the unique p-splitting of E(K) aucl‘: that
p(E(ﬂ)) = 0.

Looking at the explicit constructions in the proofs of (1.7) and (1.6)
we find that for ¢ € E(K) there is a unique integer v such t.h.at.
(m, 1)z € 7* + E(0), where m = m, and for this v we have

¥lz) = -¥((m, 1)) = Zp(r) € - p(K").

3=

Case (1.5.8). (v is discrete, k is finite, A is ordinary, and Y is uniquely
divisible by manampnp.) Let T4 and Ty denote the maximal tori in
the special fibers of A and D respectively. Let At (resp. B!') denote the
formal completion of A (resp. B) along the torus T4 (resp. 7)), and let
E! denote the formal completion of I along the inverse image of T4 X Ty
in . Then E'is a bie)ft.ension (in the category of formal group schemes
over 0) of (Af, B*) by G,,. (Here 0 denotes 0 viewed as adic-ring. See
the technical description of adic-rings in §5. The formal spectrum of 0 is
denoted by S. By G,, we mean the formal completion of G, p along its
special fiber G,n/k-) Since A is ordinary, it follows from 5.11.1 or 5.12
below that the formal group scheme biextension E* has a unique splitting,
¢: B — G,,. Taking points with coordinates in 0 we obtain a canonical
splitting ¥g: £*(0)— Gm(0) = 0° of the set-theoretic biextension E*(0) of
(A4(d), B(0)) by 0°, and we define in this case ¥, to be the unique p-splitting
of E(K) such that ¢, | E*(0) = poyyp. Again, the existence and uniqueness
of such a p-splitting follows from (1.6) and (1.7), once we note (cf. (5.1.1))
that A%(0) (resp. B%(0)) is the subgroup of points P € A(0) (resp. P € B(0))
whose reduction mod 7 is contained in Tx(k) (resp. Tp(k)), and that E*(0)
is simply the part of [£(0) lying over A*(0) X B!(d). Thus we can add a still
smaller biextension to the left of the diagram under case 1.5.2:

n" — tl'
n n
E(d) & E(0)

l |
AY(d) x B'(d) C A°(0) X B(K)

By (1.7), (1.6) and (1.7) in succession we extend the p | 0*-splitting p o ¥
of E(0) to [(0), then to E°(K) and then to E(K) obtaining finally our
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canonical p-splitting ¥,. For z € E(K) there is an integer v such that
(ma, 1)z € ¥ + E(0); writing (m4, 1)z = 7* + y, we have

(nA, mBﬂB)y € Et(ﬁ)

and then ¢,(z) is given explicitly by the formula

) = (ol + p(vol(ma mana)) )

mpnang

Hence i 1
el B Y e 50*)

Yol2) € mplK) + ————(0")
If we are simultaneously in case (1.5.2) and (1.5.3), then p o g = 0, hence
the 9, we have just defined in case (1.5.3) does indced coincide with that
defined for (1.5.2). This concludes the proof of 1.5, or rather its reduction
to our result (5.11, 5.12) on the existence of unique splittings of certain
formal group scheme biextensions.

Remark. At the cost of increasing n4 and np a bit, one can avoid some
of the technical complications of 5.11.1 by replacing the “toric completions”
At, B', E* by the formal completions A/, Bf , E/ of A, B and E at the zero
points of their special fibers. Then E/ is a biextension of (47, B/) by 6/, in
the category of formal groups over 0, and the existence of a unique splitting
for it is given by a proposition of Mumford; see (5.11.5). But then instead
of n4,np one must take integers N4, Ng such that

Nao A°(k) = 0= Npo B°(k).

(1.10) Functorial properties of 1,.

In this paragraph, without stating it explicitly, we suppose that, in each
situation considered, the canonical p-splittings which occur in formulae are
defined, i.e., that we are in one of the threc cases (1.5.1-3). If no indication
of a proof is given, it is because the stated formula follows immediately
from the unique characterization of canonical p-splittings given in (1.9).

(1.10.1) Change of value group, and linearity in p.
Let p: K*—Y and ¢: Y — Y’ be homomorphisms. Then

"pep = c"u"p-

gl
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Let p,p' : K* — Y be homomorphisms and ¢,c’ € EndY. Then

Yepterw = € Yp + Py

(1.10.2) Change of field.

Suppose o: K — L is a continuous homomorphisms of local ficlds. Let
p:L°—Y
be 2 homomorphism. Then
Yooo =Y, 00,

i.e., the diagram
E(K) = E(L)
Voer | 1 #
) of = ¥
is commutative. Indeed, the right side has the characterizing properties of
the left, in each of the threc cases.

(1.10.3) Change of abelian variety.

First, let Ay, B, be abelian varicties over K and f: A, — A, g: B, — B
K-homomorphisms. Let E; be the biextension of (Ay, By) by G, x ob-
tained from E by pullback via (f,g), so that we have a commutative

diagram
E, . E
"]

l l
%9
Ay XB, —- AXD

Let p: K*— Y be a homomorphism and ¢, (resp. y,) the canonical
p-splitting of I (resp. of E;). Then
Vi, = Yp O P

(1.10.4) Symmetry. : ;
If E is the biextension pairing A and B, then its “mirror-image” *E (cf.

[SGA 7 1], exp. VII, 2.7) is a biextension, pairing I3 and A. Morcover, there
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is a canonical identification of sets *I(K) = E(K). Any p-splitting of [} i
a p-splitting of *I7.

(1.10.5) Trace.

Suppose L O K is a finite extension, which we assume Galois for
simplicity. Let G = Gal(L/K) and suppose p: L* — Y is a homomorphism.
Let E(L, K) be the part of £ which lics over A(L) X B(K), and dcfine a
map Tr: E(L, K)— E(K) as the map which is the trace Ly(L) — IEy(K)
on the fibers of £ — B for b € B(K). Then for z € E(L, K),

'MP]K')(T’ I) 3= “}'2 e por(x)'

rE

Indeed, if z € E,,. b€ B(K),

Yiojxc+)(Trz) = Il"{pu{-)(z TI) (sum in Eb(L)).

rTeC

By (1.10.2) and (1.10.1) this equals

w,(Zm) =D %(r2) = t,u(2)
=45 @
In particular, if pr = p for all 7 € G, then
(1.10.5.2) Yioic+)(Trz) = [L : K]hy(z).
And if p = 00N, k, where 0: K*— Y, then this becomes
[I: Kibo(Tr z) = [L : K]thoon, (%),
whence, if Y has no [L : K]-torsion,

(1.10.5.3) '(,bo(Tl‘ :I:) — ‘dmomux(x).

(1.11) Local universal norms.
In [22] Schneider defined a p-adic height pairing using an approach
modeclled on Bloch’s deflinition of the archimedcan height pairing. To define
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h-is pairing, Schneider makes use of “local splitlings” obtained by considera-
tion of local universal norms. In this paragraph we investigate the connec-

tion between the canonical biextension splittings of (1.5) and Schneider’s
splittings.

!l.ll.l) Local Z,-eztensions. Let K be a complete local field with finite
residue field. Let p: K* — @, be a non-trivial continuous homomorphism.
Such a homomorphism extends uniquely to the profinite completion of K *

s

K —Q,

and by local class field theory, p determines a Z,-extension /K whose vt
layer K, /K is the unique cyclic extension of degree p* such that

P(Nk,/kK})=p" - p(K"*) C Q.

(1.11.2) Universal p-norms.

Fix a p as in (1.11.1). If Gk is any commutative group scheme, let
the subgroup of universal p-norms, G(K) C G(K), be defined as the
intersection of the images

TrK.fK: G(K,)—' G(I()
for all v.

Ezamples. I G = G,,, then @m(K) is the kernel of the homomorphism
p: Go(K) = K*— Q,. The group of universal p-norms A(K) for our
abelian variely A is of finitc index in A(K) if either A g is ordinary of good
reduction or L/K is unramificd, ([11] 4.39; and if L/K is unramified, 4.2

and 4.3).

(1.11.3) Biextensions of universal p-norms. '
Recall that E(K,,K) C E(K,) is the sct of points which project to
A(K,) X B(K). Definc the subset E(K) C E(K) to be thc intersection of

the images of

Tri, /K- E(K,, K)— L(K)

for all v, (cf. 1.10.5).
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(1.11.4) Lemma. If A(K) is of finite indez in A(K), then E(K

) nherig

the structure of a bieztension of (A(K), B(K)) by @m(K) via the naturq|
e s

tnclusion Gom(K) C Gm(K)
! i
E(K) o E(K)
1

!
A(K) x B(K) C A(K) X B(K).

Proof.  For each b € B(K) we must show that

0 = Gpm(K) — F,
is exact. This is (essentially) lemma 3

Schneider’s method for
phrased in terms of biexte

(1.11.5) Lemma. Lt A(K) be of

@ unique p-splitting of the bieztensions E(K)

Proof. An easy application of (1.6)
splitting (which exists when A(K) is of
p-splitting.

(1.11.6) Proposition.

(a) L/K s unramified,

or

(b) A/g and By have good reduction,

Then /](K] 1 of finite index in A
E(K) is equal to Schneider’s p-splitting.

Proof. By (1.11.2), A(K) is indeed o
For each v > |, Jet

Pv =P°NK,)‘K:

constructing his p-adic anal
nsions as follows:

(K) = A(K) -0

of §2 of [22].

ytic height may be

finite indez in A(K). Then there i
which takes E(K) to zero.

and (1.7). We refer to the above
finite index in A(K)) as Schneider’s

Suppose that either

and are ordinary.

() and the canonical p-splitting of

l finite index in A(K).

K;'_’Qp
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and %, = 1¥,,, the canonical p,-splitting of E(K,). We have by (1.10.5.3)
a commutative diagram: 5

E(K.,K) % g
(1.11.6.1) I Treuix ! :"a.
E(K) % Q

where ¥ = ¥ is the canonical p-splitting of E(K).

(1.11.7) Claim.
There is an integer ¢ € Z, such that, for all v,

v, E(K,) C P—cPu(K;)'
Our proposition follows from (1.11.5) because
pu(K}) =p"p(K") € Qp

and consequently by (1.11.6.1), YE(K) is contained in p“~* - p(K*) for all
v, hence is zcro.

To prove the claim, let 0, = o(K,) be the ring of integers in K,.
Note that the Néron model of Ak, over 0y is, under assumption (a) or
(b), the base-change to 0, of A. Let m, = Mma/k,, ™ = nA/K. and
m!, = mp/K., n!, = npy/k, be the exponents of A/k, and Bk, -

By the theorem in (1.5),

1 .
IL',,E(K.,) C = PV(Kv)
if L/K is unramified, and
- 1 L]
v B(K.,) C PV(Kv) 1 ﬂ-uﬂ’.,. pu(0})

il Ak and B,k have good, ordinary reduction.

Note that, in case (a), my 18 bounded independent of v (by the number
of components of A/I)‘ If we are not in case (a), then m, = m!, = 1 and
n,, (resp. n}) is bounded independent of ¥ (by the number of points of A
(resp. B) in the residue ficld of L). Our claim follows.
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§ 2. Interpretation in Terms of Zero-Cycles and Divisors;
Relation with Néron’s Canonical Quasi-Functions

(2.1) The symbeol [a, D, ¢].

In the next two paragraphs, K can be any field; Ak is an abelian variety
over K, Ay its dual, and E = E4, cf. (1.3).

Consider the set T of triples (a, D, c) consisting of:

(i) A zcro cycle of degree zero, 8 = ), ni(a;), ai € A(K), on Ak, all
of whose components are points a; of A rational over K.

(ii) A divisor D algebraically equivalent to zero on A/, whose support
is disjoint from 4a.

(iti) An element c € K*.
A triple (8, D, ¢) € T dctermines a point [8, D,¢] € E(K) in a well-known
manner, and every point of E(K) is of this form. The symbol [a, D, ¢| obeys
the following rules.

(2.1.1) [a, D, c] lies over the point (a,b) € A(K) X B(K), where

a= 5@ =" " nia

and
b= CI(D) el The point in A’(K) representing
the class of the divisor D.
(2.1.2) [@,D,c]=c+[a,D,1] force K".

(2.1.3) Addition in 4E(K) for a = S(a) is given by
[a, Dy, 1] + [, Dy, 1] = [8, Dy + Dy, 1].

(2.1.4) Addition in Ey(K) for b= CI D is given by
[a;, D, 1] + [az, D, 1} = [a; + 8, D, 1].

(2.1.5) If f is a rational function on Ax whose support is disjoint from A&
we have

[6,(/),1] = [a,0, /()]
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where

1@ =[] fe)™, it a=>_ nia).
(2.1.6) For cach D and each ag € (A — Supp D)(K) there is a K-morphism
9 = 9ao,n: (A/k —Supp D)— E
such that

9(“) = [(a) — (ao), D, 1]'

The properties (2.1.1)-(2.1.8), for K and its algebraic extcnsions, charac-
terize the symbol [8,D,c|. Indeed, suppose [ ] and [ ]2 are two such
symbols with those properties. Let their difference be

§(a,D,c) = [8,D,c|; — [8,D,c]2 € K".

This makes sense by (2.1.1). By (2.1.2), §(a, D, c) is independent of ¢, and
by (2.1.5), it depends only on the class of D. Choosing divisors D; in this
class such that none of them passes through zero, and whose supports have
an empty intersection, we find using (2.1.6) that there arc morphisms

hi: (A — Supp D;)— Gm
such that
hi(a) = 8((a) — (0), Ds, 1)

These fit together to make a morphism
h: A— G,,.

This h is constant since A is complete, and h = 0 because h(0) = 0. Since
the elements (a) — (0) generate the group of zcro cycles of degree 0, this
shows that é(a, D, ¢) = 0 for all (8, D,c) and proves unicity.

A further property of the symbol is invariance under translation

(2.1.7) [Aa, Da,¢] = [8, D, €],

if a, and D, denote the images of @ and D under translation by a. Indeced,

the left side has the propertics characterizing the right.
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(2.2) Interpretations of splittings as pairings between disjoint
zero cycles and divisors.

In this paragraph we recall the connection between p-splittings ang
Néron type pairings; cf. Zarhin [24], where also conditions arc given for
p to admit some splitting.

Let P be the set of all pairs (8, D) such that (8,D,1) € T. Suppose now
p: K*—Y is a homomorphism, and ¢: B(K)— Y isa p-splitting of E(K).
Put T

[8, Dl =" w((a, D, 1)).
Then it is easy to check that the symbol [a, D]y, which is defined for
(a,d) € P, and takes values in Y, satisfies the rules

(2.2.1) (8, D] is biadditive.
(2.2.2) [2,(£)) = o(f(a)).
(2.2.3) (%, D.] = [a, D).

Conversely, given a symbol satisfying (2.2.1), (2.2.2), and (2.2.3), we
obtain a p-splitting ¢ of E(K) by putting

(2.2.4) ¥([8, D, c]) = p(c) + [8, D).

This is clear, once one proves that 1(z) is well defined, i.e., that (2.2.4) is
independent of the representation of z as a triple z = [8, D,c|]. We leave
the details of this to the reader. Thus, a p-splitting of E(K) 1s the same as
a pairing (8, D| satisfying the above three properties.

(2.3) Canonical pairings.

Now suppose we are in the situation of the theorem of (1.5). In particular,
we suppose that K is local as in §1. Define the canonical p-pairing (on P,
with values in Y) by

[@, D], = ,([8, D, 1])
where 1, is the canonical p-splitting of (1.5).

(2.3.1) Proposition. Suppose v(z) = —log|z|. Then the canonical
v-pairing [A, D], coincides with Néron's symbol (D,n),, defined in §9 of [15].

Indeed, our conditions (2.2.1). (2.2.2), (2.2.3) are Néron’s conditions (i),
(ii) and (iii’), and according to Néron’s Theorem 3 and his remark (d) after
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its proof, his symbol is characterized by those three conditions together
with his condition (iv), which states that the function a — [(a) = (ao), D]
is bounded on bounded subsets of (A — Supp D)(K). We have (cf. 2.16) 3

[(a) — (o), D], = ¥u((a) = (a,), D, 1) = ga,,n(a).

A morphism like g,,,p takes bounded scts to bounded sets. It suffices
therefore to show that our canonical splitting v, is bounded on bounded
subscts of E(K). In the archimedean case (1.5.1) this is true because
bounded sets are compact and %, is continuous. In case (1.5.2), it is a
consequence of the following lemma, whose proof we leave to the reader.

(2.3.2) Lemma. A bounded subset T of E(K) which lies in
E(K) = Upez(“’p + E(R)) is contained in a finite union of the sets
¥ + E(R).

In cases (1.5.1) and (1.5.2) the canonical p-splitting 1, is determined
by %, because p(z) depends only on v(z). Hence, those two cases of the
theorem of 1.5 are simply the expression in terms of bicxtensions of Bloch’s
interpretation in terms of extensions of Néron’s theory ol canonical quasi-
functions and his pairing (X, a),. Thus these two cases are not really new;
nor are biextensions essential for them, since the characterizing properties
of 1, can be expressed in terms of single extensions.

§ 3. Global Fields

In this section K denotes a “global” field, by which we mean at first
only this, that there is given a set V of places of K such that cachv eV
is either archimedean or discrete, and such that, for each ¢ € K*, we have
le]y = 1 for all but a finite number of v € V. In particular, the set Vo of
archimedean places in V is finite.

For cach v € V, let K, denote the completion of K at v, and for v ¢ Vead
let 0, be the ring of integers in K,, 7, a uniformizer and k(v) = 0, /m,0,.

Let Ajx and Bk be abelian varictics and fix E/x a biextension of
(A/k,Bjk) by Gmyk, 1€, Ak and B/ are paired abelian varieties. For
each v of V, we consider the local theory for Ak, discussed in §1, and let
the symbols A,, E,, for all v € V; A2,mu,, for v € Voo; Taw,na, for v
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such that k(v) is finite have the meanings explained in the beginning of §1.
and similarly for the abelian variety B g .

Let Y be a commutative group, and suppose that we arc given a family
p = (pv)vev of homomorphisms p,: K — Y, such that pu(0y) = 0 for all
but a finite number of v's, and such that the “sum formula” 3 .y pu(c) =0
holds for all ¢ € K*.

Define the topological ring Ak as the restricted product H:.-ev K, where
a vector z = (Zy)eey i8 in Ak il z, € 0, for all but a finite number of
v € V=Y. We have a canonical homomorphism K — Ag. It is convenicnt
to view a family p = (p,) as above, as a homomorphism

p: Ay —Y

which annihilates the image of o, for all but a finite number of v € V — Vo
as well as the image of K*.

Suppose that we are given for cach v € V a p,-splitting, y, of E(K,),
and that w.,(E(O.,)) — 0 for all but a finitc number of v’s:

(3.1) Lemma.  Let p = (p,) and let (,) be as just described. There
i3 @ unique pairing

(, ):AK)XB(K)—Y
such that if € E(K) lies above (a,b) € A(K) X B(K), then
(3.1.1) (a,6) = ) wu(z0),

veY

where z,, € B(I,) is the image of = under the inclusion K C K,.

Proof. We first note that (3.1.1) is a finite sum. Indeed, our abelian
varieties A, B and the biextension E come from abelian schemes A/r, B/r
and a biextension I of (A/g, B/g) by Gm/r for some finitely generated
subring 2 C K.

This R is contained in 0, for almost all v by the fact that |c|, = 1 for
almost all v, for ¢ € K*. We have A(K) = |J A(R), the union over all such
R’s, and for = € E(RR) we have z, € E(0,) for all but a finite number of v.

We can therefore define a map ¥: B(K)—Y by

Ya) = 3 vula)

veV
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For each ¢ € K* we have then
¥z +¢) = ()

because Py (zv + c)= Yu(zy) + po(c) and E., pu(c) = 0. Thus the right side
of (3.1.1) is independent of the choice of z € E(K) above (a, b). Moreover
the map E(K) — A(K)X B(K) is surjective, because there arc local scction;
(E is a line bundle on A X B, minus its 0-section). Ilence (3.1.1) defines a
map A(K) X B(K) — Y. The map so dcfined is biadditive, because the ¢,

are splittings.

(3.2) Definition. If, in the situation of (3.1), the p,-splitting ¢, is the
canonical p,-splitting of Theorem 1.3, for each v, then the pairing (3.1.1)
s called the canonical p-pairing, and is denoted by (" e

(3.3) Thus, the conditions for the canonical p-pairing
AK)X B(K)=Y

to be defined for a family p = (py) of homomorphisms py: K;—Y are

(3.3.1) For each v € Voo, we have p,(c) = 0 if |¢|, = 1.

(3.3.2) There is a finite subset § C V — Vo (possibly empty) such that
po(05) =0forv¢g SU V.. and such that A, is ordinary and k(v) finite for
vES.

(3.3.3) Sum formula Yoeypu(z)=0for z € K*.

(3.3.4) Y is uniquely divisible by M N, where

M = H m,, and

A homomorphisin p: A} — Y defined by such a family (p,) where (3.3.1-
4) are satisfied is called admissible. This notion depends upon the “global”
field K with its V, A/k, Bk and Y. If Y is a uniquely divisible group,
then the notion does not depend on Bk

The values of the canonical p-pairing are in the following subgroup of ¥

S pli+ X |l + —p )|t T el

vE Ve vES i "'ES'vao
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(3.4) Functorial Properties.

In this paragraph, we let A, B be paired abelian varicties over a “globa)
field K, and without stating it explicitly we suppose that, in each situation
considered, the canonical p-pairings which occur in formulac are dcﬁned,
i.e., that the p's which occur arc all admissible. Each subparagraph follows

directly from its local counterpart in (1.10).

(3.4.1) Change of value group, and linearity in p.
Let p: A}y — Y and c: Y — Y’ be homomorphisms. Then

c-(a,b), = (a,b)e

fora € A(K), b€ B(K).
The group of homomorphisms

p: A} — Y
which are admissible for A, B form an End(Y }-module, and we have:
(a,0)cp+erpr = - (a,b), + ' “(a,6)

for ¢,c’ € End(Y), a € A(K), b€ B(K).

(3.4.2) Change of field

Let o: K — L be a homomorphism of “global” ficlds such that I is
of finite degree over K, and the chosen set of places V;, lor L is the full
“inversc image” of the choscn set of places Vi for K.

Denote by the same letier ¢ the induced mapping A} — Aj and also

the mappings induced on groups of rational points.
Then for an admissible p: A7 —Y we have

(“1 b)pc = [Ua' ab)ﬁ
fora € A(K), b€ B(K).
(3.4.3) Change of abelian variety.
First, let Ay, By be abelian varieties over K and f:Ai— A g:Bi— B

K-homomorphisms. Let I, be the biextension of (Ay/xc, Byyxc) by G/
obtained from E via pullback via (f,g). Then

(lal!gbl)p = (ﬂl;bl)p
for a; € AI(I{), b; € B|(I{)
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An important corollary of this rule is the following. Suppose A and B
are abelian varieties over K, A’ and B' their duals, and E4 (resp. EP) the
biextension of (A, A) (resp. (B, B)) by &m expressing the duality. Suppose
f:A—Bisa homomorphism and f': B'— A’ its dual. This means that
the pullbacks (f X 15)'E® and (14 X f')* EA are canonically isomorphic
biextensions of (A, B') by Gmm. Hence for a € A(K) and b € B'(K) we have

(fas b')P = (a’ f'b,)ps

where the canonical p-pairing on the left is relative to E® and that on the
right is relative to EA.

(3.4.4) Symmetry.
Let *E be the “mirror-image” of the biextension E (cf. [SGA 7 I] exp.
V11 2.7). Thus *E is a biextension of (B/k,A/k) by Om/k- Then

(a, b)p = (b, a),

for a € A(K), b € A(K), where the left-hand side refers to the canonical
p-pairing AK) X B(K) = Y (coming from E) and the right-hand side
refers to the canonical p-pairing B(K) X A(K) — Y (coming from *E).

If A is symmetrically paired with itself (by a biextension E of (A/Kk, Ajk)
by Gm/Kk such that there is an isomorphism of biextension E = °FE) then

the canonical p-pairing

A(K) x AK) — Y

(ay,a2) — (a1,a82),
is a symmetric bilincar form.

Remark. This is notably the case when A is the jacobian of a smooth
projective curve Xk and the biextension E is the one determined by the

canonical 6-divisor (cf. (13], §2, §3).

(3.4.5) Trace.
Let K C L be a finite Galois extension of “global” ficlds. Assume again

that Vg is the full inverse image of Vk. We have a natural norm homomor-
phism Ny/kx: AL— Ak compatible with local norms Ni_/k,: bw— K,
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for v € Vg and w € Y, “lying above” v, and with the global Norm
Nyjk: L*— K*. Assume that Y has no [L : K]-torsion. Then for a ¢

A(L)and b e B(K)
(TTL!Kav b), = (a, b)P“NLIK i

(3.5) Examples of canonical p-pairings.
(3.5.1) The Néron pairing: Suppose our places v have absolute values
¢~ ||, satisfying the product formula

H leh = 1.
veYV

Taking ¥ = R and p,(c) = —log|c|, for each v we obtain a canonical
pairing
A(K) X B(K) - R.

This is Néron’s canonical pairing, as follows immediately from 2.3.1.

(3.5.2) A slight refinement of (3.5.1) which uscs essentially the same local
splittngs and therefore is in some sensc an old story, but which does not
seem to have been considered much and whose value we are unable to
estimatc, is obtained as lollows. Suppose that each m, = 1. Let

W= @ Re,
veV

be a real vector space with basis elements e, in one-one correspondence
with the places v e V. Let

Wy = E Re, + Z Z log|m, ey

vE Vo vE€ Voo

and let Z denote the subgroup of clements of W of the form

Zlog|c|,,e.,, ceE K*.
veV

Put
Y = (Wo/2)

and for cach v € V, put
pu(c) = — loglel, + Z € Y.
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Then the canonical p-pairing
AK)X B(K)=Y

is defined. Note that if K is a number field, V the set of all places, and ||,
the normed absolute value at v € V, then “dividing” the exact sequence

0— Z Re, — Wo — (ideal group of K) — 0

vE Ve
by the sequence
units of K K* principal ideals
e — —y | —t el — 0
roots of 1 roots of 1 of K
we obtain an exact sequence
Docv. R
0— S — Y — (ideal class group of K) — 0.

image of units of K

Thus Y is (non-canonically) a product of a finite group, a real line, and
(card Voo — 1) circles.

(3.5.3) Remarks. 1) Y maps canonically to the ideal class group, so we
get a canonical pairing

A(K) X B(K) — (ideal class group of K).

This pairing is not new; see (10], [23] for a function field version, and for
something in number fields, see Duncan Buell’s paper Elliptic curves and
class groups of quadratic fields, J. London Math. Soc. (2), 15, (1977), 19-25.

2) Let us specialize (3.5.2) to the case of K a real quadratic field of class
number one, and qu, B’,Q paired abelian varietics over ®.

Then Gal(K /@) operates on A(K), B(K) and Y. Let the superscript
+ or — refer to the maximal subgroup on which the nontrivial clement of

Gal(K /@) acts as multiplication by +1 or —1. Thus B(K)* = B(R), and
the canonical p-pairing induces a pairing

A(K)~ X B(Q =Y~ = R/L.

What is the meaning of this pairing?



220 MAZUR AND TATE

§ 4. p-adic Height Pairings

Fix paired abelian varieties Ak, Bjx and supposc that K is a globa)
field in the strict sense, i.e., is either a finite extension of @ or of F(T),
F a finite field. L.et V be the set of all places of K.

(4.1) Let p: A} — @, be a continuous admissible homomorphism, (for
A, K) so that the canonical pairing

A(K) X B(K) - ,
(a,8) = (a,b),

is defined. The space of such homomorphisms forms a @p-vector space
Vp = Vp(A, K). If p ## char K, then V; is finite-dimensional.
The canonical pairing ( , ), induces a trilinear functional

A(K)@Qp XBK)®Q XV, = Q,
(G,ﬁ,ﬂ)“*[a,ﬁ)r

For a € A(K), b € B(K) we have:
(4.1.1) (a,8), € 7" p(Ak) C ]
where v is the maximum of the two numbers

(4.1.2) Max (ord,m4,) and Max(ord;ms mp na ngs,)
vfinite vES

where S is as in (3.3.2).

(4.2) Admissible Z,-cztensions.
Let
pGai: Gk — Q,

be a continuous homomorphisms of the Galois group Gk of an algebraic
closure K of K into the additive group of p-adic numbers. Then by the
reciprocity law, pgai induces a continuous homomorphism

p: A — Q.

We say that pga) is admissible (for A, K) if p is.
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Since @, is totally disconnected and 2-torsion free, p, = 0 for ar-
itedean v F?r nonarchimedean v, p, is unramificd unless p = char (k(v))
because otherwise 0, has no infinite pro-p-group as quotient. g

'I..'he homcm'.mrpl'flsm p‘(and pGa1) is admissible for A, if and only if A'is
ordinary at v il py 18 ramified (and if, in the function field case, such places
are finite in number). .

If pgal 18 nontrivial, then pga) cuts out a 1. -axtension LK d

i Z efi
the condition that pgai factors: p / ined by

Gk PGal Qp
‘\-
Gal(L/K)

Such a Zp-ext.ension is called admissible for A if pGal is admissible. Thus
a I p-extension L/K is admissible for A if and only if il is ramificd at only
a finite set S of places of K, and A, is ordinary for cach v € 8. "The
admissible Z ,-extensions are in (1 : 1)-correspondence with onc-dimensional

subspaces of V3(4, K).

(4.3) The determinant form.

For this paragraph and the next, let B= A’, and E = EA.

By the Mordell-Weil theorem, the groups A(K) and A'(K) are finitcly
generated. They are of the same rank since A and A’ are isogenous.

Let the common rank be 7 and let (P)i<i<r, (resp: (Q;)1<5<r) be a
basis for A(K) (resp. A'(K )) mod torsion.

Then for admissible p the determinant

def
6(A,p) £n detlgi,jsr(Pi,Q:')p

is defined, and is, up to sign, an invariant of A and p. Since ( )p 18
linear in p, the determinant 6(A) is a homogeneous form of degree r on
the @,-vector space Vp. A line in this space, and also the corresponding

1 ,-extension is called singular (for A)if §(A,p) = 0 for p in the line.

(4.4) Schneider’s p-adic analytic height.
Suppose, in this paragraph, that K is a number field and that A has
good, ordinary reduction at all places v of K, of residual characteristic p.

Ther Schneider [22] has defined a height pairing
A(K) x A'(K) = R
(a,b) = (a,b)p
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using “local splittings” defined by universal norms in the cyclotor, .
Z,-extension. Define the homomorphism p.: Gk — @, cutting out the
cyclotomic Z,-extensions by p.(¢0) = log,(u) where u = u(0) € Z is defincd
by ¢? = ¢* for all p-power roots of unity ¢ € K. Here log, is the p-adic

logarithm.
From (1.11.6) and the definition of Schneider’s height pairing ( , ),

we immediately have;

Proposition. Schneider’s height pairing is equal to our canonical

Pe-pairing.
Schneider conjectures that this height pairing is nondegenerate.

Remark. Schneider’s construction of a p-adic height pairing generalizes
immediately to the following kind of PGali: Gk — Qp; for K any global
field.

(4.4.1) The homomorphism Poa: is ramified only at a fintte set
&
of valuations v of k , and for each such v, A has good ordin-

ary reduction.

Then (1.11.6) again insures that Schneider’s p-pairing coincides with the
canonical p-pairing.

(4.5) Global universal norms.

Let I be a topological group isomorphic to Z,, and written multiplica-
tively. Let ', =T'?". Let W be a Zp-module admitting an action of I such
that if W,, = WT= (the fixed submodule under the action of I'y,) then W,
is a Zp-module of finile type for each n 2 0,and W = |J_W,.

Let

Nonn = Z o€ Zr[Fn/F'n]
o€l'n /T

for integers m > n > 0. Set Nep = Npmo
Form the projective limit lim W, compiled via the mappings
—
m

Neon: W — W, (m >n>0).
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a!‘(:tj_s) Proposition: Let w € Wo = W', These conditions are equiv-

(1) The element w 1s in the image of the natural projection

m

” (1) >Thcr; :'; a fadmt'fy of elements wy, € Wy such that NyynwWm = W
orm > n > 0, and wo = W.
(2) For eachm > 0 there is an element wm € W,n such that Nyywm = w.

Proof. (1) and (1') are clearly cquivalent, and (1') = (2) trivially. A
standard compactness argument gives that (2) = (1').

Call an element w € W, satisfying the above conditions a universal norm.

Let K be a global field.
If pgai: Gk — @p is a nontrivial continuous homomorphism cutting out

the Zp-extension L/K set ' = Gal(L/K) and let Kn/K dcnote the nit
layer, so that I, = Gal(L/Kn)
Suppose that A is an abelian variety; sct

W= AL)®Lp; Wa=AKn)®1L.

The universal norms (for the [-module W) in Wo = A(K) ® Z, form a
Z’_P—submodu!e:
U,(A/x) € AK)® Iy
which we refer to as the module of universal p-norms. Fix B/k an abelian
varicty and I¥/x 3 biextension of (4, B) by Gm.

(4.5.2) Proposition. Lelp satisfy (4.4.1). The universal p-norms3

are degenerate for the canonical p-pairing:
(uv ﬁ)ﬂ = 0

for allu € U,(A/x) and B € B(K)Q®Zy.

we may assume that B is the

Proof. By the functorial property (3.4.3)
€ A(Kn)®1Lp be such that

dual of A and E = EA. For ecach n > 0,let an
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Trk,./x(an) = u. By (3.4.5)
(v,8), = (an,B),..

where p, = po Nk, /K-
By (4.1.1), (an,B),, € 7-pn(Ak,), where vy is given in terms of the
exponents for Ak, B/ asin (4.1.2). By the same reasoning as in (1.11.7)

Vn admits an upper bound (say N) of n, giving:
(w,8), € p"~Np(A%)

for all n.

Remarks. 1. Let K be a quadratic imaginary field, and p a prime
number. The anti-cyclotomic Zy-eztension of K is the unique Z ,-extension
L/K such that [/@ is Galois with non-abelian (necessarily “dihedral”)
Galois group. By considering Birch-lleegner points on factors of jacobians
of modular curves one may produce (for any quadratic imaginary ficld K)
examples of prime p, abelian varieties A/Q and finite field extensions K/K
such that if p: Gp — Qp cuts out the anti-cyclotomic L p-extension L/K
(where L = [-K) the Z,-moduie Upo(A/ k) of universal p-norms is of positive
rank. ([7], [9]).

We have no examples where rankz U,(A,k) is positive, and p cuts out
a Zp-extension dillerent from (a basc-change of) an anti-cyclotomic Z,-
extension.

2. Let D,(A;K) denote the left-kernel of the canonical p-pairing, where
p is admissible. By (41.5.2)

rankz Uy(A/x) < rankz, D,(A/k).

Although at present, we have no examples where B = A’ E — FA and
where this is a strict inequality, we expect that such cxamples exist.

3. An interesting special case to investigate is that in which A is an
clliptic curve over @, with rank AQ) = 1. Let P ¢ A(®Q) be a generator
mod torsion. Let p be a prime of ordinary reduction for A.

Let K be a quadratic imaginary ficld and pg j: G g — @, a continuous
homomorphism which cuts out the anti-cyclotomic Z ,-extension of K.

Note that V(A K) is 2-dimensional, generated by pe (cl. 4.4) and Pa.K-

Using the behavior of our canonical pairing under the action of Gal(K /Q)
(cf. (3.4.2)) one sees that

(Prp)h.x = 0.
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Consider these two special cases.

CASE 1. rank A(K)=1.

Then the anti-cyclotomic canonical pairing ( , ok 18 totally degener-
ate. What are the universal norms? If (P, P),, # 0 it follows that the
anti-cyclotomic 7 ,-extension is the only Z,-extension of K, singular for A.

CASE 2. rank A(K)=2.
Let Q@ € A(X) be such that P,Q generate A(K) mod torsion, and

0Q=—QforagF1E€ Gal(K/Q).
Writing p = upc + VP x €V, for (u,v) € @ X Q,, the d i
; a, ) ; eterminant,
5(A,p), defined in (4.3), is easily seen to be this :uadraiic form:

[P,P]p‘ : (Q! Q)ﬂc -4 — (PIQ)E..K '02:

which represents zero if (P, Q)pux = Oorif (P, P),. - (@, Q). is a square
in @p. It would be interesting to have some cases wherc (P,Q)pun 0
and (P, P),. - (@, Q),. is a nonzero square in @;.2 In such a case one woul

have precisely two 7 ,-extensions of K which are singular for A. It would
then be especially interesting to investigate the arithmetic of A over the

various finite layers of these singular Z ,-extensions.

§ 5.Biextensions of Formal Group Schemes

(5.1) Review of formal schemes.
Our references for this paragraph are

Ch. V, §1. All our rings are assumed to

formal schemes, ctc., will be locally noetherian).
A (noetherian) topological ring A is called adic if A has an ideal I (called

an ideal of de finition) such that the topology on A is the I-adic topology,
and A is separated and complete for its topology. Since A is noetheriaun,

[EGA 1] §10 and Knutson’s [8],

be noetherian (and our schemes,

s

21, this regard, sec forthcoming publications of Gudrun Drattstrom.



228 MAZUR AND TATE

A has a largest ideal of definition I (which is the radical of any idey) of
definition).

If A is adic, the topological space Spec(A/T) (for I any idcal of definition)
is independent of I, and is called the formal spectrum of A.

The formal spectrum of A may be endowed with a canonical local adic-
ringed space structure (X, 0y ), denoted Spf(A) such that there is a canonical
isomorphism I'(X,0r) = A and such that the functor A — Spf(A) is a
fully faithful functor from the category of adic rings to the category of
local adic-ringed spaces. By definition, an affine formal scheme is a local
adic-ringed space isomorphic to Spf(A) for some adic A.

The topological ring A is called the affine coordinate ring of the affine
formal scheme Spf(A).

The category of formal schemes is the (fully faithful) subcategory of local
(adic) ringed spaces “modelled on” affine formal schemes. (Cf. [8], [EGA ]|
§10.)

Recall that 0 is a complete discrete valuation ring with uniformizer =.
et S = Speco, and S, =_Speco/n"*'0 for n > 0. In particular,
So = Spec(0/m0) = Spec k where k is the residue field of o.

We let 0 denote the adic ring 0 with 70 as ideal of dcfinition, and
5 = Spi(d).

Let X ;s be an S-scheme and set X,, = X X g S,, viewed as Syn-scheme.

Let Y C X be a closed subscheme. 4

If XY denotes the completion of X along Y, then XY is a formal S-
scheme. Let R be a local o-algebra separated and complete for the m-adic
topology.

Let R be R viewed as adic local 0-algebra with ideal of definition 2.

Then Spf 1t is an affine formal scheme and it makes sense to consider
XY (R), the R-valued points of the formal S-scheme XY . This set may be
viewed in a natural way as a subset of X(R), the set of R-valued points
of the S-scheme X. Which subset? Since R is local, one can reduce
this question to the case where X is alline, where it is casily resolved.
Specifically, if z € X(R), denote by z X s S, € Xo(Rop) its specialization to
the closed fiber. Then

XY(R)={z€ X(R) | = % So € Y(Ro)}.

(5.2) Formal group schemes and formal groups.

If § is a formal scheme, a formal group scheme over S is a group-object
in the category of formal schemes over §. From now on, formal group
scheme mcans commutative formal group scheme.
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If G/sisa (formally) smooth formal group scheme over the formal scheme
S such ?.ha.t the suruct-ural morphisms § — § induces an isomorphism on
underlying topological spaces, we say that G is a formal group over 5

(5.3) Ezamples.

Most of our examples of formal schemes can be obtained by completing
a scheme X along 2 closed subscheme Y.

(5.3.1) Completion along the closed fiber.

Let X s be an S-scheme locally of finite type and set X, =X X5 Sn-
Let Y = Xo/s, be the closed fiber.

Denote by X the completion of X along Y. Then X is a formal 3-
scheme. In the notation of ([EGA 1] §10) it is given as an adic (Sy)-system
of schemes (X,,;sn)“.

If X}S is another S-scheme locally of finite type, we have a bijection

Hom(X,X') = lim Hom (X, X0

n

(5.3.2) Formal completion at zero.

Let Xs be a smooth commutative group scheme of dimension d. Let
eo denote the identity clement of the closed fiber Xg/s,- Form X/, the
completion of X: at the point ep. Then X/ is a formal group over the
formal scheme S. Moreover, X/ is an affine formal scheme whose affine
coordinate ting is isomorphic to a power series ring in d variables over 0
with the maximal ideal as ideal of definition.

(5.3.3) Formal completion along subtori.

Let X s bea smooth (comm utative) group scheme, and To C X a torus

over k, contained in the closed fiber. Let X't denote the formal group scheme

over S obtained by completing X along To. Since Tp is an afline k-group

scheme, a straightforward application of Serre’s criterion (also compare (8]

V thm. 2.5) shows that Xt is an affine formal group schemc over S.
Therc are natural homomorphisms of formal group schemes

(5.4) Tors.

By definition, 2 torus (
group scheme over S which, locally
a product of d copies of Gm-

of dimension d) over any base scheme S is 3
for the étale topology, 18 isomorphic to
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Let k* be a scparable algebraic closure of k, and G = Gal(k*/k). Le
R be a local ‘artinian ring’ with k as residue field. I[ 7" is a torus over R,
let To/x denote its closed fiber. The category of tori over R is equivalent
to the category of tori over k, the equivalence being given by passage to
closed fiber 7' — Tp; the latter category is anti-equivalent to the category
of free abelian groups of finite rank endowed with continuous G-module
structures, the anti-equivalence being given by G,,-duality (cf. [SGA 3],
exp. VIII).

Consequently, given To/k, for each n > 0, there is a torus Tn/s. given
up to canonical isomorphism, such that T,, X 5. Sy = Tp.

The system of tori (Tﬂ;s“)n>o has the property that T,, X ; Sn = T,

for n > m, and determines a formal group scheme T;g 3 which we refer to

as the formal torus over S determined by To/k.

(5.5) The geometry of toric completions.
Let X5 be a commutative smooth group scheme over S, To/x a torus,
and
wo: To— Xo
a closed immersion of k-group schemes. Let i"f_g. = (T"/Sn)nzo be the

formal torus over S determined by Ty as discussed in (5.4).
For each n > 0, there is a unique closed immersion

Pn: Tn_’xﬂ

of Sn-group schemes extending o (SGA 3 exp. VIII thm. 5.1).
Invoking [SGA 3] exp VI, we may form the quotient group scheme Kol Tsin
The sequence

(5.5.1) 0-T, = X, B Xo/Ta—0

is exact in the sensc that p, is faithfully flat (it is, in fact, smooth) with
kernel T,,.
The scquence (5.5.1) induces a sequence:

(5.5.2) 0T, = (X)) =Y. =0

3The notation is not misleading. This T is, in lact, the completion along the closed fiber
of a torus T over S (determined uniquely up to canonical isomorphism), but this is
irrelevant to us.
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where (X,)! is the formal completion of X, along To and Y ! is the formal
completion at zero in Xy /Ty.

Since (Xn)! is canonically (X*)n, passage to the limit gives a sequence
of affine formal group schemes over S:

(5.5.3) 0T -Xt=Y! >0

The sequence is exact in the sense that the morphism Xt — Y/ is
formally smooth, with kernel 7. The affinc coordinate ring of the S-formal

group Y/ 4 is a power series ring over 0 in v variables where v is the
codimension of Tp in Xo.

(5.5.4) Split tors.
If Tp is a split torus over k, then the affine coordinate ring of X* is
isomorphic to an 0-algebra of the form:

ligl a/[““)[[yl: | e T-l-lr' s Turf;-l]

where p is the dimension of To. Since Ty is split Pic(Tp) = 0, and hence
Pic(X*) = 0 ([SGA 2] exp. XI prop. 1.1, plus the fact that To is affine).

(5.6) Biextensions of formal group schemes over g,

Let 4, B, C be formal group schemes over 3 and E a biextension of (£, B)
by C over S. Thus E is a formal S-scheme which is a C-torsor over A X g B,
locally trivial for the Zariski topology and, moreover, E is endowed with
two group-extensions structures

(5.6.1) (eB):O—-bCB—rE{g}—*ﬁg -0
(ea): 0 — Cai— Ea— Bs—0
where 4g = A X, B viewed as formal group scheme over B, and E(s)
denotes E as B-formal scheme via its natural projection to B, etc.
The group-cxtensions (€4), (e) are required to be compatible with the
C-torsor structure of E, and with each other (cf. [SGA 7 1) exp. VII).

4The notation is not totally misleading. If Xqo/Tp is an abelian variety, there is, in fact,
an abelian variety over § whose formal completion at the zero part of the closed fiber

is YJ. See ([SGA 7 1] exp. IX §7). However, we make no use of this fact.
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In the specific case that the C-torsor E admits a global sectiop
0: A XzB — E (in the category of formal S-schemes) the biextension
structure on [/ determines, and is determined by two 2-cocycles

wo: (A X A)g—Cp
5.6.2
( ) Yo (B XB)A'—'CJ‘

where p, is a morphism in the category of formal B-schemes (a 2-cocycle)
determining the group-law in the usual way on the Cg-torsor

As XpCp S Ep)
(as 'T) i (1 [ 0'(!]

and 1, is similar. For more details, sce §2 of [12]. The 2-cocycles @, , Yo
satisly the relations (a), (b), (c) of §2 of [12].

(5.7) The category of biextensions.

Let BIEXT 3(4, B;C) denote the category of bicxtensions (of formal S-
schemes) of (4, B) by C. See ([5], [SGA 7 1] exp. VII) for a discussion of this
category.

Let Ilicxhlg(ﬂ, 8; C) denote the group of isomorphisms classes of biexten-
sions of (A, B) by C, and let Bicxt.g.(ﬂ, B; C) be the group of automorphisms
of the trivial biextension.

(5.7.1) In general, we have that Biext3(4, B; C) is the group of S-mor-
phisms h: A X B— C which arc bilincar in the sense that the induced
mappings

hB:.qu——OCB; h_,q: Bg—"CA

are homomorphisms (of formal B-groups, and A-groups, respectively).

(5.8) Canonical trivializations.

These statements are equivalent:

(5.8.1) BIEXT ¢(4, B; C) is equivalent to the punctual category.

(5.8.2) Biextg(ﬂ, B;C)=.0,fori=0,1.

(5.8.3) Every biextensions £ of (4, B) by C in the category of S-schemes
admits a unique trivialization (i.e., a l¢-splitting ¢: Is— C; cf. (1.4).
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(5.9) Biextensions by G_ /5.

Recall that Gm,(..é is the formal completion of G,, /s along its closed fiber
Gomyk- It is determined by the system (Gm/s, )Jn>o0.

If E is a biextension of (£, B) by G, the G m-torsor E may be taken to
be the complement of the zero-section in a line bundle L over A X 3 B.

In particular, if Pic(4 X B) = 0, as is the case if A and B are toric com-
pletions Af, Bt along split tori, any such F admits a section 0: £ X 8— E,
and hence can be described by the 2-cocyles ©,, %, as in (5.6).

(5.10) Canonical Reductions.

Let U,V be two smooth group schemes over S with connected fibers. Let
T(U)o C Uo, T(V)o C Vo denote k-tori contained in the special fibers. Let
Ut,V* be the completions of U,V along T'(U)o, and T(V)o respectively.

Let

(5.10.1) 0-T(U)-U =Y/ >0

(5.10.2) 0 T(V)=Vt =2/ >0

denote the exact sequences of formal group schemes over S as provided by

(5.5.3).

(5.10.3) Propositions.  The functor “inverse 1tmage of biextensions”
induces an equivalence of categories

BIEXT:(Y”, 2/;6m) = BIEXT 3(U*,V*; G m).

Note that this proposition is very close to the statement of Corollary 3.5
of ([SGA 7 1] exp. VIII). Indecd, it is identical except that we are dealing
with formal group schemes rather than group schemes. We shall adapt the
proof of that corollary to our situation.

Here we rely on some of the results and notions explained in [8), (especially
chapter V). In particular, we shall consider the global etale topology of for-
mal S-schemes (as in loc. cit. V §1) and its induced topos, which we denote
T. We also shall consider formal algebraic spaces over 8 (loc. cit. II §2) and
group objects in that category (formal group algebraic spaces over S).

We may also consider bicxtensions for the topos T ([SGA 7 1] exp. VII
§2). For exampie, BIEXT 7(U*, V*; G,») means the category of biextensions
of (Ut, V") by G,, in the topos T, i.e., a biextensions I in this category is
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a sheaf in T (and consequently a formal algebraic space over S ) endowed
with the structure of biextension.
A key step in the proof of (5.10.3) is:

(5.10.4) Proposition. BIE}(TT(T[U), V't G,y,) is equivalent to the punc- j
tual category.

We prepare for its proof.

(5.10.5) Proposition. Any formal group algebraic space over S is a
Jormal group scheme over S.

Proof. Let B be a formal group algebraic space over S, and, keeping to
the notation of loc. cit., let B, denote its first truncation (loc. cit. V Defn.
2.4). Then B, is an algebraic space over Sy and it inherits an algebraic
space-group structure from that of 8. By Murre’s theorem ([1], Theorem
4.1, [14]), By is a group scheme over Sp. By (loc. cit. V Theorem 2.5) B is
a formal group scheme.

(5.10.6) Corollary. Let G,,G3 be formal group schemes over S (com-
mutative, as always). Then any element e in Ext:(G,G2) is representable
by an eztension 0 — Gy = £ = G, — 0 in the category of formal group
schemes over S.

Now form n - A

M = Homr(T(V), 6m)
N = Exth (T(U), 6m),

where the underline means as sheaves for the étale topology over S. One
easily sces that M. (the “Cartier dual” of T(U)) is representable by an adic
(S, )-system of locally constant group schemes (torsion-free of finite rank).
But N = 0. To sce this, we may suppose that k is scparably algebraically
closed, and (using (5.10.6)) we are reduced to proving that if

(e) O—c-(;m—o{—’f‘(U)—'O

is an exact sequence of formal S-group schemes, then (e) splits. But, for
each n > 0, (es) == (e) X5 Sn may be seen to be an exact sequence
of group schemes over Sn, and splits by ([SGA 7 Ijexp. VIII, Prop. 3.3.1).
Moreover, a splitting of (e,) determines uniquely a compatible splitting
of (en) for all n. Thus N =0.
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It then follows from the general fact ([SGA 7 1) exp. VIII 1.5.2) that
Biext} (T(V), V4 6m) = Exth(V?, M).

To show that Biext!r(i'(U),V‘;Gm) vanishes, we note that (5.10.2) repre-
sents an exact sequence of sheaves in the topos T and hence our problem
is reduced to the following two vanishing statements:

(5.10.7) Exty (T(V), M) =0.
(5.10.8) Exty (27, M)=0.

But (5.10.7) follows ;mmediately from (5.10.6) and the argument of
proposition 3.4 of [SGA 7 I}, ext. VIIL To see (5.10.8), consider an exact
sequence of formal group schemes over S.

(5.10.9) 0— M —E—2! =0

Since Z/(k) =0, and £ — Z! is formally étale, there is a unique lifting
~: 2! — € sending the k-valued point of 7! to zeroin £(k). It is immediate
that v provides a splitting of (5.10.9).

Since the “Cartier dual” M = H_Q_m-r('}'(U).Gm) is étale, one casily
sees that Bicxtog(T(U), vtG,n) = 0. The proposition then follows from
(5.8).

(5.10.10]Concimion of the proof of the proposition (5.10.3).

By ([SGA 71] VI 3.7.6) and the exact sequence (5.10.1), one sees that the
category BIEXT (Y7, V" G,n) may be .dentified up to equivalence with the
category whose objects arc S-biextensions E of (U, V*) by G supplicd
with trivializations of the induced biextensions £’ of (T(U),V*) by Gm.
Morphisms are defined evidently. By (5.10.-1) we then have an cquivalence
of categories

BIEXT (Y, V% 6m) = BIEXT (U, V% 6m)
and a symmetrical reduction of V* o 7! cstablishes our proposition.

(5.11) Canonical trivializations.
Let U,\-’,T(U)U,T[V)g be as in (5.10). Thus Us,V)s are smooth group
schemes with connected fibers.
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(5.11.1) Proposition. Suppose that .Uf (equivalently: Y/) is of mul-
tiplicative type. Then BIEXT 1(U%, V*; Gym) is equivalent to the punctual

category.
Proof. Using (5.10.3) it suffices to show

(5.11.2) Lemma. IfY/ is ordinary, then BIEXT+(Y/, Z/;6,,) is punc-
tual.

This is a simple exercise which can be seen in a variety of ways. For
example:

(5.11.3) Proof of (5.11.2): In analogy with the proof of (5.10.3), set

-
-

M = Hom1(Y/,6,,)
fv . EX&!r(Y‘r, Gm):

Then M is casily seen to be a projective limit of locally constant finite
(formal) group schemes over S.

Moreover, NV is seen to vanish by the proof of (SGA 7 I exp. VIII, Prop.

3.3.1). Thus Biextl(Y, AR Gm) = Ext!(Z7, M) and the latter group is seen
to be zero by the argument demonstrating (5.10.8).

Finally, since llomg(Z/, Jff) = 0, we see that
Biext(Y/, Z27;6,m) =0
as well and (5.11.1) follows from (5.8).

(5.11.4) Paraphrase of part of the above proof, using cocycles.

From the fact that M is a projective limit of locally constant finite
(formal) group schemes over S, and that ﬂf‘: 0, the reader may verify
that if E is a biextension of (Y/,Z7) by G,,, then there is a section
0: Y/ X Z/ — E such that the 2-cocycle (5.6.2)

Yo: (Y X Y')70 — 6,

is trivial. From the relations satislied by o, %, (cf. [12], §2 (a), (b), (c))
it follows that ¢, may be viewed as an S-morphisms from Z/ X Z/ to



HEIGHT PAIRINGS VIA BIEXTENSIONS 235

- ! & .

M = Homs(Y", Gm) which takes the unique k-valued point of Z7 X Z' to
zero. Since M is a projective limit of locally constant group schemes, @,
is trivial as well and consequently E is the trivial biextension.

(5.11.5) A mild weakening.

If one is willing to assume that the formal group Z/ is of “finite height”
which is indeed all that occurs in any serious application that we envision,
then (5.11.2) also follows immediately from ([12], §5, Prop. 4).
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