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1 Manifolds

1.1 Introduction

A differentiable manifold is, in short, a generalisation of Euclidean space1, on which one can do
analysis. In order to define Lie groups, we must know what differentiable manifolds are. Definitions
and basic properties of groups and topological spaces are assumed to be known. We will give right
away a some important examples of differentiable manifolds, such as GLn(C), SO(n) and SU(n),
that will return frequently later in this thesis. Moreover we introduce tangent spaces and derivatives
in order to discuss Lie algebras later.

1.2 Differentiable manifolds

Een differentiable manifold (from now on: manifold) can be seen as a generalisation of Euclidean
space, on which, on which one can do analysis. An atlas is, in short, a set of homeomorphisms that
identify the manifold locally with a Euclidean space.

Definition 1.1. An n-dimensional differentiabl atlas A on a topological space X is a set of charts
(Ui, ϕi), i ∈ I, where Ui ⊂ X is an open subset and ϕi : Ui → Ui

′, with Ui
′ ∈ Rn open, a

homeomorphism, such that the following 2 conditions are satisfied:

1.
⋃
i∈I Ui = X

2. For all i, j ∈ I the bijection ϕjϕ
−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) : p 7→ ϕj(ϕ

−1
i (p)) is C∞

(infinitely differentiable, that is, smooth). The two charts are called differentiably compatible.

With this notion of atlas we can define what a manifold is.

Definition 1.2. An n-dimensional manifold is a pair (X,A) (often defnoted just by ”X”) with X
a topological space that is hausdorff and that has a countable basis for the topology, and with A an
n-dimensional differentiable atlas on X.

The definition of n-dimensional manifold is such that different atlases A and B can describe the
same manifold; in that case we call A and B equivalent, meaning that A ∪ B is an n-dimensional
differentiable atlas too. In order to remove this annoyance, we call an atlas A maximal if it contains
all charts that are differentiably compatible with all charts from A. Each atlas A is contained in a
unique maximal atlas D(A) (add to A all charts that are differentiably compatible with all charts
from A). It is then not hard to see that

A ∼ B ⇔ D(A) = D(B) .

1Here, Euclidean space means ‘finite dimensional real vector space.’ In particular, no inner product is given.
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And then we have the notion of submanifolds.

Definition 1.3. Let (X,A) be an n-dimensional manifold. A subspace X ′ ⊂ X is called an k-
dimensional submanifold of X if, for every x ∈ X ′ there is a chart (Ux, ϕx) ∈ D(A) such that
x ∈ Ux and ϕx(Ux ∩X ′) = Rk ∩ ϕ(Ux).

Such a subspaceX ′ is called a submanifold for a good reason: the set of charts (Ux∩X ′, ϕx|Ux∩X′)
is a k-dimensional atlas on X ′.

Of course one can consider the product of 2 manifolds (X,A) and (Y,B). It is easy to see that
the set X × Y with the product topology is hausdorff and second countable, and that the set

A× B := {(U × V, ϕ× ψ) : (U,ϕ) ∈ A, (V, ψ) ∈ B}

is an n+m-dimensional differentiable atlas, because the charts

ϕ× ψ : U × V → U ′ × V ′ ⊂open Rn × Rm = Rn+m

satisfy the required conditions.
Als certain quotients of manifolds can be made into manifolds, but this is more subtle than

products, as one can see in Section 1.6 of [1]. In the chapter on Lie groups we will come back to
this.

Now that we have defined the objects of our interest, manifolds, we can define the maps between
them that are of our interest, the so-called differentiable maps.

Definition 1.4. Let (X, {(Ui, ϕi) : i ∈ I}) and (Y, {(Vj , ψj) : j ∈ J}) be, respectively, an n-
dimensional and an m-dimensional manifold, and let x be in X. A continuous map f : X → Y
is called differentiable in x if for all (i, j) such that x ∈ Ui en f(x) ∈ Vj the map ψjfϕ

−1
i from

ϕi((f
−1Vj) ∩ Ui) ⊂ Rn to Rm is differentiable in ϕi(x). The map f is called differentiable, or a

morphism of manifolds if f is differentiable in all x ∈ X. If f is bijective and both f and f−1 are
differentiable then f is called a diffeomorphism.

If f : X → Y and g : Y → Z are differentiable then so is g ◦ f : X → Z. As composition is
associative, and identity maps are morphisms, this gives us the category of manifolds.

Examples

1. An easy example of a manifold is Rn. This is an n-dimensional manifold with atlas A =
{(Rn, IdRn)}.

2. Another easy example is GL(V ), the group of invertible linear transformations of a finite
dimensional real vector space V , also denoted as Aut(V ). In this thesis V will always be
a real or complex vector space of (finite) dimension n, and a choice of a basis of V then
gives an isomorphism from GL(V ) to GLn(K), the general linear group, that is, the group
of invertible n × n-matrices with coefficients in K = R or C. The set GLn(R) is a manifold

because it is a subset of Rn2

(the coordinates are the matrix coefficients). The fact that a
square matrix is invertible if and only if the determinant is non-zero shows that GLn(R) is

an open subset of Rn2

. This embedding is the only chart in the atlas and makes GLn(R) into
an n2-dimensional manifold. The same procedure works for GLn(C), the group of invertible
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n× n-matrices with complex coefficients, and as C ∼= R2 (as real vector spaces) GLn(C) is a
2n2-dimensional manifold.

For many interesting subsets of manifolds it is not so easy to check that they are submanifolds
directly from the definition of submanifold. Often it is easier to use the regular value theorem
as in §1.4 of [1]; I will not discuss this here. With that theorem one can show that the following
examples are submanifolds of GLn(R) or of GLn(C):

3. SLn(C), the special linear group, the group of complex n× n-matrices with determinant 1, is
a 2n2 − 2-dimensional submanifold of GLn(C).

4. O(n), the orthogonal group, the set of real orthogonal n×n-matrices (here we omit the field in
which the matrixcoefficients take their values because the word ”orthogonaal” implies that this
concerns real matrices). The subset O(n) is a 1

2n(n−1)-dimensional submanifold van GLn(R).

5. SO(n), the special orthogonal group, the set of real orthogonal n × n-matrices with deter-
minant 1. This is a 1

2n(n − 1)-dimensional submanifold of GLn(R). In physics and in the
sequel of this thesis SO(3) plays an important role because it is the group of rotations of the
Euclidean 3-space.

6. SU(n), the special unitary group, the set of unitary n × n-matrices with determinant 1. By
definition: SU(n) := {x ∈ Mn(C) : xtx = 1, det(x) = 1}. This is an n2−1-dimensional
submanifold of GLn(C).

1.3 Tangent spaces

In order to define Lie algebras it is important that we define what tangent spaces are. For X an
n-dimensional manifold and p ∈ X we want that the tangent space at p, denoted TX(p), is the
“linear approximation” of X at p. There are several ways to make this precise, and they are all
equivalent, see also chapter 2 of [1]. We will use one of them.

Definition 1.5. Let (X,A) be an n-dimensional manifold and p ∈ X a point. Let

KX(p) := {α : (−ε, ε) ⊂ R→ X | ε > 0, α(0) = p}

be the set of morphisms of manifolds from (−ε, ε) to X. This set KX(p) is called the set of differ-
entiable curves on X through p. The tangent space TX(p) is then defined as

TX(p) = KX(p)/ ∼

for the equivalence relation2 α ∼ β ⇔ (ϕ ◦α)̇(0) = (ϕ ◦ β)̇(0) ∈ Rn for one (and therefore for any )
chart (U,ϕ) ∈ A with p ∈ U . We denote the equivalence class of α by [α].

This is a rather intuitive definition where we see tangent vectors in a point as derivatives of
curves through the point. The next theorem gives the set TX(p) the structure of n-dimensional
R-vector space.

2The notation f ·(0) means derivative of f at 0.
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Theorem 1.6. For (X,A) an n-dimensional manifold and p ∈ X, TX(p) is an n-dimensional
R-vector space with

[α] + [β] = [γ]⇔ (ϕ ◦ α)̇(0) + (ϕ ◦ β)̇(0) = (ϕ ◦ γ)̇(0)

for all charts (U,ϕ) ∈ A.

A proof of this is given in [1], § 2.3, and in [2], § 1.8.2.

Examples

1. GLn(R) is open in the R-vector space Mn(R) ∼= Rn2

. This shows that tangent vectors of
GLn(R) can be seen as elements of Mn(R), hence TGLn(R)(1) = Mn(R).

One can also see this intuitively by looking at curves

KA : (−ε, ε)→Mn(R) : t 7→ 1 + tA

where A ∈ Mn(R) and ε > 0 is small enough. As ε is small enough we have that [KA] is
invertible, with inverse [K−A] because

(1 + tA)(1− tA) = 12 − (tA)2 = 1 mod t2

so that KA ∈ KGLn(R)(1). Moreover KA(t)̇(0) = A hence KA ∼ KB ⇔ A = B. Therefore we
have a bijection from Mn(R) to KGLn(R)(1)/ ∼.

In general we have that End(V ) is the tangent space at 1 of Aut(V ) = GL(V ) for a finite
dimensional real or complex vector space V .

For the tangent spaces of the following submanifolds of GLn(K) I refer to § 1.2 of [3].

2. The tangent space TSLn(C)(1) is the subspace of Mn(C) consisting of matrices with trace 0,
hence with the sum of their diagonal elements equal to 0.

3. The tangent space TSO(n)(1) is Mn(R)−, consisting of the antisymmetric matrices, that is,
the matrices A with At = −A.

4. The tangent space TSU(2)(1) is the subspace of M2(C) consisting of matrices A with trace 0

and A∗ = −A, where A∗ is defined as A∗ := A
t
. We will see this tangent space many times.

It is a 3-dimensional R-vector space spanned by

I =

[
i 0
0 −i

]
, J =

[
0 1
−1 0

]
,K =

[
0 i
i 0

]
.

1.4 Derivative

Now that we have introduced the notion of tangent space we can define, in a natural way, what the
derivative of a function is. For a function f : Rn → Rm we know such a way: we take as derivative
D(f), the jacobi matrix, whose (i, j)-coefficient is ∂fi

∂xj
. We generalise this principle to the notion

of derivative at a point of a morphism of manifolds.

Definition 1.7. Let f : X → Y be a morphism of manifolds from X to Y , and x ∈ X a point.
The derivative of f in x is defined as

D(f)x : TX(x)→ TY (f(x)) : [α] 7→ [f ◦ α] .
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2 Lie groups and Lie algebras

2.1 Introduction

Lie groups were introduced by the mathematician Sophus Lie in 1870 in order to study symmetries of
differential equations, and have been applied in many ways in todays physics. With our knowledge
from the preceding chapter we can now define Lie groups and give some important examples.
Moreover we will define Lie algebras because they are closely related to Lie groups and they make
the determination of the representations of SU(2) in the next chapter easier.

2.2 Lie groups

Now that we have looked at what a manifold is we can proceed to the notion of Lie group.

Definition 2.1. A Lie group G is a topological space with an n-dimensional differentiable atlas and
a group law such that the maps G×G→ G : (x, y) 7→ xy and G→ G : x 7→ x−1 are differentiable.

When G is compact as topological space then we call G a compact Lie group.
A morphism of Lie groups from G to G′ is a homomorphism G → G′ that is also a morphism

of manifolds.

One can show that the examples from the previous chapter are not only manifolds but actually
Lie groups, by showing that the above mentioned maps are differentiable.

In the proof of theorem 3.9 we will use the following lemma.

Lemma 2.2. Let G be a Lie group and let g ∈ G. Then lg : x 7→ gx and rg : x 7→ xg are continuous
and differentiable.

Proof. I prove the lemma for lg, the proof for rg is analogous. Let G be a Lie group. The the map

l : G→ G×G : x 7→ (g, x)

is continuous and differentiable. On the first coordinate this map is the constant map x 7→ g and
on the second coordinate it is the identity x 7→ x. Both are continuous and differentiable, hence
so is l. As the group law ∗ : G × G → G : (x, y) 7→ xy is continuous and differentiable, so is the
composition

lg := ∗ ◦ l : G→ G : x 7→ gx .

Examples

1. GLn(R) is a Lie group with group law the matrix multiplication“·”. In this case it is quite easy
to see that both maps that must be differentiable are differentiable, because the multiplication
of two matrices boils down, coordinate-wise, to taking sums and products, and those are
differentiable operations. When taking inverse one divides by the determinant of the matrix,
but indeed for matrices in GLn(R) this determinant is non-zero and so this operation is
differentiable. Also GLn(C) is a Lie group.
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2. All submanifolds of GLn(R) and GLn(C) such as SLn(C) and SU(n) that we gave as examples
in the previous chapter are Lie groups because they are as well subgroups as submanifolds
of GLn(R) or of GLn(C). Therefore the maps (x, y) 7→ xy and x 7→ x−1 are automatically
differentiable.

3. O(n), SO(n) and SU(n) are examples of compact Lie groups because the equations that the
matrix coefficients must satisfy are given by xxt = xtx = 1, respectively xxt = xtx = 1 define
a closed and bounded subset of Rn2

and by the theorem of Heine Borel such a set is compact.

4. The quotients of a Lie group by a subgroup is a Lie group if the subgroup is normal and closed.
This is certainly not trivial, because it is a priori not clear how the quotient is a manifold;
see the preceding chapter. In particular SU(2)/{1,−1} is a Lie group. We will encounter this
one again! For theorems on quotients of Lie groups see also [3], § 1.11.

2.3 Lie algebras

A Lie algebra is a vector space with on it an operation, the Lie bracket, that satisfies the following
three conditions.

Definition 2.3. A Lie algebra is a pair (L, [·, ·]) (often denoted just by “L”) with L an R-vector
space and a map [·, ·] : L × L → L : (x, y) 7→ [x, y], the Lie bracket, that satisfies the following
conditions:

1. [·, ·] is R-bilinear,

2. [·, ·] is antisymmetric, that is, [x, y] = −[y, x],

3. For all x, y, z ∈ L we have [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, (the Jacobi identity3).

A Lie group G gives in a natural way a Lie algebra via the tangent space g := TG(1). We already
know that g is a vector space, and now we just make a natural choice for the Lie bracket. For that
we make use of the so-called adjoint representation, a specific example of a representation, a notion
that awaits us only in the next chapter.

Definition 2.4. Let G be a Lie group. The map ψg : G→ G : h 7→ ghg−1 is an automorphism of
the Lie group G. We have

D(ψg)1 : TG(1) = g→ TG(ψg(1)) = TG(1) = g : [α] 7→ [ψg ◦ α]

and one can check that this map is R-linear, with inverse D(ψg−1)1, hence D(ψg)1 ∈ Aut(g). This
map is denoted Ad : G → Aut(g) : g 7→ D(ψg)1 and is called the adjoint representation of the Lie
group G.

We already know that Aut(g) = GL(g) (automorphisms of g as real vector space) and from
example 1 of section 1.3 it follows that TGL(g)(1) = End(g), so the adjoint representation of G gives
rise to the following map:

ad := D(Ad)1 : TG(1) = g→ End(g)

we use this map to define the Lie bracket on g and the Lie algebra Lie(G).

3More conceptually, this identity can be understood in 2 ways: (i) the map [x, ·] : L → L is a derivation, that
is, it satisfies, for all y and z in L, the Leibniz rule for differentiation of a product [x, [y, z]] = [[x, y], z] + [y, [x, z]],
(ii) under the map L → EndR(L) sending x to [x, ·], the Lie bracket is compatible with the commutator in EndRL,
that is, for all x and y in L we have [[x, y], ·] = [x, ·] ◦ [y, ·]− [y, ·] ◦ [x, ·]
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Definition 2.5. Let G be a Lie group. The Lie algebra of G is the vector space g together with the
map [·, ·] : g× g→ g : (g, h) 7→ [g, h] = ad(g)(h)

This definition is not complete without a proof that this map [·, ·] satisfies the conditions for a
Lie bracket and it is also possible to do this (see [3] theorem 1.1.4), but we will look more directly
at the specific case of G = GLn(K) with K = R or C because it is then less abstract and more
relevant for this thesis.

Theorem 2.6. The Lie algebra of GLn(K) with K = R or C is Mn(K) with the map [·, ·] :
(X,Y ) 7→ XY − Y X, the commutator of X and Y , and this is a Lie bracket.

Proof. From example 1 of section 1.3 and from the definition of derivative it follows that

D(ψg)1 : TGLn(K)(1)→ TGLn(K)(1) : [1+tA] 7→ [ψg ◦(1+tA)] = [g ·(1+tA) ·g−1] = [1+t(g ·A ·g−1)]

where products “·” are matrix multiplication. If one identifies [1+ tA] with A then one gets the map

D(ψg)1 : Mn(K)→Mn(K) : A 7→ g ·A · g−1 .

Then Ad : g 7→ (A 7→ gAg−1), hence ad : TGLn(K)(1)→ End(Mn(K)) and

ad(X)(Y ) = D(Ad)1([1 + tX])(Y )

= [Ad ◦ (1 + tX)](Y )

= [(1 + tX)Y (1 + tX)−1]

= [(1 + tX)Y (1− tX)]

= [Y + tXY − tY X +O(t2)]

= XY − Y X

This map is K-bilinear, antisymmetric and, by a simple computation, satisfies the Jacobi identity.

With the help of the Lie algebra of a Lie group, one can often prove theorems on Lie groups.
In the next chapter we will see an example related to representations. A what simpler example of
how Lie algebras and Lie groups are related is the fact that a connected Lie group is commutative
if and only if the Lie bracket on the Lie algebra is identically 0. This comes from the fact that ψg
is the identity if and only if g commutes with all h in the Lie group.

The relation between Lie groups and Lie algebras is such that one can define a functor Lie from
the category of Lie groups to that of Lie algebras. For this one sends a Lie group to its Lie algebra,
and a morphism to the morphism that it induces. One then obtains an equivalence between the
category of connected and simply connected Lie groups and the category of Lie algebras. For more
information see [2].

3 Representations

3.1 Introduction

Representation theory is an important subject of mathematics because it enables mathematicians to
transform group-theoretical questions into questions in linear algebra, an easier part of mathematics.
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In representation theory one considers the group as a set of transformations of a mathematical object
(more precisely: as a homomorphism to the group of automorphisms of the object), in our case this
object is a vector space. In this chapter we define, among others, representations, what it means
that a representation is irreducible, and we study the representations of SU(2) and of SO(3).

3.2 Representations

A representation of a group over a field K = R of C is a, usually finite dimensional, K-vector space
with on it an action of the group.

Definition 3.1. Let G be a group and K = R of C. A representation of G over K is a pair (V, ϕ)
(often denoted just as “ϕ” or “V ”) with V a K-vector space and ϕ : G→ Aut(V ) = GL(V ) a group
homomorphism.

For G a Lie group a representation ϕ is a representation of the Lie group G if ϕ is a morphism
of Lie groups.

A map f : V → V ′ with V, V ′ representations of G over K is a morphism of representations if
f is K-linear and, for all g ∈ G and v ∈ V , we have f(gv) = gf(v).

Representations V and V ′ are called isomorpic if there exists an isomorphism between them.

An example of a representation is the adjoint representation of a Lie group G.
A representation is in fact a map from the group G to the set of linear transformations of a

vector space V , that is, after a choice of a basis for V , ϕ(G) is a group of matrices. This has the
advantage that one can study properties of Lie groups via linear algebra, one of the work horses of
mathematics. This also give insight in what it means that a representation is irreducible.

Definition 3.2. Let (V, ϕ) be a representation of G over K. Then (V, ϕ) is called irreducible if V
has precisely two subspaces that are invariant under the action of G: {0} and V . This means that
if for all g ∈ G one has ϕ(g)(V ′) ⊂ V ′ then geldt V ′ = {0} or V , and V 6= {0}.

3.3 Representations of SU(2)

Representations of SU(2) play an important role in this thesis because they are relatively simple
to construct, and because they are used a lot in physics. Let C[x, y]d be the vector space of
homogeneous polynomials in two variabels over C of degree d. An element of C[x, y]d is of the the
form

f(z) = adx
d + ad−1x

d−1y + ... + a0y
d

with z =

(
x
y

)
Theorem 3.3. The vector space (C[x, y]d, ϕ) is a representation of SU(2) over C if one defines,
for U ∈ SU(2) and f(z) ∈ C[x, y]d,

ϕ(U)(f)(z) = f(U−1 · z) .

Proof. The map ϕ is a group homomorphism because (ϕ(U1 · U2)(f)(z) = f(U−12 · U−11 · z) =
ϕ(U2)(f)(U−11 · z) = ϕ(U1)(ϕ(U2)(f))(z) = (ϕ(U1) ◦ ϕ(U2))(f)(z).
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Theorem 3.4. De representation (C[x, y]d, ϕ) is irreducible.4

Proof. We will use the Lie algebra su(2) of SU(2), as computed in example 4 of section 1.3. Let
V ⊂ C[x, y]d non-zero and invariant under the action of SU(2). Now it holds that if V is invariant
under the action of SU(2) that it is invariant under the action of su(2).

First we observe that su(2) is spanned by 3 basis vectors:

I =

[
i 0
0 −i

]
, J =

[
0 1
−1 0

]
, K =

[
0 i
i 0

]
and that [I, J ] = 2K, [J,K] = 2I, [K, I] = 2J . Now the action ϕ : SU(2) → GL(C[x, y]d) defines
an action D(ϕ)1 := ϕ′ : su(2)→ End(C[x, y]d) of su(2) on C[x, y]d by

ϕ′(A) = [ϕ(1 + tA)]

in other words
ϕ(1 + tA)(f(z)) = f(z) + tϕ′(A)(f(z)) +O(t2)

For I, J and K we have

ϕ(1 + tI)(xayb) = ((1− ti)x)a((1 + ti)y)b = (xa − atixa)(yb + btiyb)

= xayb + ti(b− a)xayb

ϕ(1 + tJ)(xayb) = (x− ty)a(tx+ y)b = (xa − atxa−1y)(yb + btxyb−1)

= xayb − atxa−1yb+ 1 + btxa+1yb−1

ϕ(1 + tK)(xayb) = (x− tiy)a(−tix+ y)b = (xa − atixa−1y)(yb − btixyb−1)

= xayb − atixa−1yb+1 − btixa+1yb−1

modulo t2. In other words:

ϕ′(I)(xayb) = i(b− a)xayb

ϕ′(J)(xayb) = bxa+1yb−1 − axa−1yb+1

ϕ′(K)(xayb) = −bixa+1yb−1 − aixa−1yb+1

As V 6= {0} there is a v 6= 0 in V ; we take one such. Then v = vdx
d + vd−1x

d−1y + ... + v0y
d

with not all vi = 0. As each term 6= 0 of v after applying ϕ′(I) gets another coefficient, one can,
by applying ϕ′(I) repeatedly, and by taking suitable linear combinations, and up with a monomial.
So, without loss of generality, xayb ∈ V for some (a, b). From the fact that V is invariant under
su(2) it then follows that ϕ′(J)(xayb), ϕ′(K)(xayb) and also

1

2b
(ϕ′(J)(xayb) + iϕ′(K)(xayb)) = xa+1yb−1

and
1

2a
(iϕ′(K)(xayb)− ϕ′(J)(xayb)) = xa−1yb+1

are elements of V . By applying this repeatedly we get that xiyd−i is in V , hence that V = C[x, y]d.
Hence V is irreducible.

4Peter-Weyl’s theorem 4.4 implies that these are all irreducible representations of SU(2). One can also give a
direct proof of that; see [2].
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Figure 1: Euler angles ϕ, θ, ψ.

3.4 SO(3)

Before we look at the relation between SU(2) and SO(3) and the representations of SO(3) we first
look a bit better at the Lie group SO(3), that plays such an important role in physics.

As a set SO(3) consists of the orthogonal 3× 3-matrices with determinant 1. Since the columns
of an element A of SO(3) are orthogonal, the image of the standard basis (e1, e2, e3) under A is
again an orthogonal basis. Moreover, as detA = 1, it has the same orientation and one can see A
as a rotation of R3.

Following Euler, a rotation of R3 can be given by 3 Euler angles ϕ, θ and ψ, see section 9.6
of [4], as follows. The rotation with angles ϕ, θ and ψ, (0 ≤ ϕ < 2π), (0 ≤ θ < π), (0 ≤ ψ < 2π) is
obtained by first rotating about the z-axis over the angle ϕ, then about the y-axis over the angle θ,
and finally again about the z-axis over the angle ψ. This gives the following surjective map from
R3 to SO(3):

(ϕ, θ, ψ) 7→

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 ·
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 ·
 cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1


This map is not injective at all, not only because it is 2π-periodic in the three arguments, but also
because for θ = 0 it gives the rotation over the angle ϕ+ ψ about the z-axis. It is easy to see that
the map is continuous. This easily gives the following lemma.

Lemma 3.5. The Lie group SO(3) is connected.

Proof. The map above is continuous and surjective, and its source is connected.

3.5 Quaternions and representations of SO(3)

There is an isomorphism of Lie groups SU(2)/{1,−1} ∼= SO(3), hence SU(2) is a double cover
of SO(3). To see this, it is convenient to introduce quaternions, an R-algebra discovered and
applied to mechanics in 3 dimensions by Hamilton.

11



Definition 3.6. The quaternion algebra is the sub-R-algebra H of M2(C) consisting of the matrices[
a −b
b a

]
with a, b ∈ C. One can also consider H as the R-vector space R1⊕RI⊕RJ⊕RK ⊂M2(C)

with

1 =

[
1 0
0 1

]
, I =

[
i 0
0 −i

]
, J =

[
0 1
−1 0

]
, K =

[
0 i
i 0

]
and as multiplication the multiplication of matrices.

It is not hard to prove that H is indeed a sub-R-algebra and that both definitions are equivalent.
The center Z(H) is R1: every element of M2(C) that commutes with I is diagonal and that it
moreover commutes with J means that it is a scalar.

Definition 3.7. Let, for x in H, x∗ := xt in H, and let

N(x) := x∗x = xx∗ = det(x) ∈ R1

tr(x) := x+ x∗ ∈ R1

We define an inner product on H by

〈x, y〉 := (x∗y + y∗x)/2 = tr(x∗y)/2 .

The identities on the right of the “:=” must be checked but this is easy. Note that we have

{x ∈ H| N(x) = 1} = SU(2) ⊂ H∗

and
V := RI ⊕ RJ ⊕ RK = su(2) ⊂ H .

Consider now the maps lx : H→ H : y 7→ xy and rx : H→ H : y 7→ yx.

Theorem 3.8. The maps lx and rx zijn orthogonal iff N(x) = 1 and det(lx) = det(rx) = (N(x))2.

The proof (left to the reader) of the second part uses the characteristic polynomial of lx and rx,
see § 5.10 of [2] and for the lineare algebra [6].

Now consider, for a x ∈ H∗, the function cx : H → H : y 7→ xyx−1. This function is invertible
and on R1 it is the identity, hence it gives, by restriction, a function cx : V → V with V =
RI ⊕ RJ ⊕ RK ∼= R3. The map c : x 7→ cx is a homomorphism from H∗ to GL(V ). For x ∈ SU(2)
this is c(x) and because cx = rx−1 ◦ lx and theorem 3.8 it is an orthogonal linear transformation
with determinant 1. Hence by restriction to SU(2) one obtains the map

c : SU(2)→ SO(V ) (∼= SO(3)) : x 7→ cx = (y 7→ xyx−1) .

The kernel of this group homomorphism is the intersection SU(2) ∩ Z(H) = {1,−1}.

Theorem 3.9. We have im(c) = SO(V ).

Proof. First we note that c is continuous and differentiable (and so a morphism of Lie groups),
because for every choice (v1, v2, v3) of a basis of V the matrix coefficients of

c(x) :=

 〈xv1x−1, v1〉 〈xv2x−1, v1〉 〈xv3x−1, v1〉〈xv1x−1, v2〉 〈xv2x−1, v2〉 〈xv3x−1, v2〉
〈xv1x−1, v3〉 〈xv2x−1, v3〉 〈xv3x−1, v3〉


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are polynomials in C[x(1,1), ..., x(2,2), x(1,1), ..., x(2,2)]. As x(1,1) = x(2,2) and x(1,2) = −x(2,1) these
are polynomials in C[x(1,1), ..., x(2,2)] and so are continuous and differentiable.

If we can show that im(c) ( 6= {0}) is both open and gesloten then by lemma 3.5 im(c) = SO(V ).
Suppose that the derivative D(c)1 : TSU(2)(1) = su(2)→ TSO(V )(1), a morphism of Lie algebras,

is surjective, then the Impliciete Function Theorem on pagina 6 of [1] gives that c is a homeomor-
phism from a neighborhood of 1 ∈ SU(2) to a neighborhood 1 ∈ SO(V ), hence in particular

∃U ⊂ SU(2) open, 1 ∈ U : c(U) is open.

Then c is a homomorphism hence c(gU) = c(g)c(U) ⊂ im(c), and by lemma 2.2 lc(g)−1 is continuous,
hence c(g)c(U) is open. As c(g) ∈ c(g)c(U) is

im(c) =
⋃

g∈SU(2)

c(g)c(U)

and thus is open.
We know that dim(su(2)) = dim(TSO(V )(1)) = 3, hence D(c)1 is surjective iff D(c)1 is injective.
Let A ∈ su(2) and v ∈ V . Then

v 7→ c(1 + tA)(v) = (1 + tA)v(1− tA) = v + t(Av − vA) (mod t2)

and from this it follows that D(c)1(A) = v 7→ Av− vA. For A ∈ ker(D(c)1) this means, as we have
already seen with the quaternions, that A ∈ R1 ∩ su(2). Then A = A∗ = −A, that is, A = 0, so
D(c)1 is injective, surjective and im(c) is open.

Now im(c) is a subgroup of SO(V ), so SO(V ) is the disjoint union, over the g′ ∈ SO(V ), of
the g′ · im(c), that are all open by lemma 2.2. In particular the complement of im(c) is and so im(c)
closed.

We have seen that im(c) is open as well as closed, and so the theorem is proved.
Let us also give a sketch of a second proof, that is more direct and moreover gives, for each

element in SO(V ), its 2 preimages in SU(2). Let g be in SO(V ). If g = id, then the 2 preimages
are id and −id in SU(2). So now assume that g 6= id. Then g is a rotation about a unique line
in V , and there is x ∈ V , unique un to sign, such that ‖x‖ = 1 and g is a rotation about Rx over
a non-zero angle ϕ ∈ (−π, π] (here we use the orientation of V for which (I, J,K) is an oriented
basis). Then the 2 preimages of g are ±(cos(ϕ/2) + sin(ϕ/2)x).5

So we have a morphism of Lie groups c : SU(2) → SO(V ) such that SU(2)/{1,−1} ∼= SO(V )
as Lie groups. A choice of an orthonormal basis of V , for example (v1 = I, v2 = J, v3 = K) then
gives an isomorphism of Lie groups SO(V ) → SO(3). This isomorphism is not unique: another
choice (for example (v1 = K, v2 = I, v3 = J)) gives another isomorphism. This isomorphism
induces an isomorphism of Lie algebras so(V ) → so(3) and since we already saw that D(c)1 is a
bijective morphism of Lie algebras (hence an isomorphism), we conclude that su(2) ∼= so(3). Also
this isomorphism depends on the choice of the basis for V .

The irreducible representations of SO(3) can now be seen as the irreducible representations of
SU(2) on which the subgroup acts {1,−1} trivially. These are precisely the Vi := C[x, y]2i, (i ≥ 0)
with

ρi : SO(3)→ GL(Vi) : SO(3)→ SU(2)/{1,−1} → GL(Vi)

5To prove this, use an orthonormal oriented R-basis (x, y, z) of V , show that x2 = y2 = z2 = xyz = −1, giving
an automorphism H sending (i, j, k) to (x, y, z), and do a direct computation of conjugation by a + bi.
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but this map is not unique, it depends on the choice of basis for V . But if we choose another basis
we get isomorphic representations, so in this sense the choice of basis does not matter. The freedom
of choice of basis for V is important and we will use it in the next section.

4 The Peter-Weyl theorem

4.1 Introduction

Now we arrive at the central mathematical result of this thesis: the theorem of Peter-Weyl. First
it was proved by Hermann Weyl for compact Lie groups, and then for general compact topological
groups.

One can see this as a generalisation of Fourier theory of periodic functions to compact Lie
groups: as Fourier theory gives a basis for L2(S1) (every function in L2(S1), that is, every periodic
function on R, is written as Fourier series), the Peter-Weyl theorem gives a basis for L2(G). Here
G is (in our case) a compact Lie group contained in some GLn(C) and the complexe Hilbertspace
L2(G) is the (completion of the) set of square integrable complex valued functions on G, more about
which in a moment. For f1, f2 ∈ L2(G) one has by definition that

∫
G
f1f2µ is defined. Here µ is a

left-invariant volume form also called Haar measure. More about volume forms can be found in [1]
chapters 3 and 5 and in [2] chapter 11. As I onely barely touch on this subject I will not elaborate.
As G is compact, one can normalise µ (scale it with a factor in R×,>0) uniquely, such that

∫
G
µ = 1.

Another consequence of G being compact is that µ is also right-invariant. Here we assume that G
is a sub-Lie group of GLn(C) because this is all we need and because the proof is easier (the Haar
measure is easier to understand). Now first something about Hilbert spaces.

4.2 Hilbert spaces

As already mentioned, L2(G) is an example of a Hilbert space. As such spaces occur in the Peter-
Weyl theorem I shall now give a concise definition. For details see [8] chapter 6.

Definition 4.1. An inner product space over C is a C-vector space V with a positive Hermitian
sesquilinear form, the inner product. That is, the inner product 〈·, ·〉 satisfies:

1. ∀x ∈ V : 〈x, x〉 ≥ 0 (positive),

2. ∀x, y ∈ V : 〈x, y〉 = 〈y, x〉 (Hermitian),

3. ∀x, y, z ∈ V ∀a ∈ C :
〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉
〈x, ay + z〉 = a〈x, y〉+ 〈x, z〉 (sesquilinear).

A Hilbert space is a special kind of inner product space.

Definition 4.2. An inner product space V is a Hilbert space if it is complete for the norm

‖x‖ = 〈x, x〉1/2 ,

that is, every Cauchy sequence in V sequence converges.

14



The normed complex vector space L2(G) is defined as the completion of the C-vector space
C(G) of square integrable continuous functions G → C. As the inner product on C(G) is defined
as 〈f, g〉 =

∫
G
fgµ one sees easily that C(G) is an inner product space (not complete unless G is of

dimension zero) and that L2(G) is a Hilbert space.
It will turn out useful (even necessary) to use, for Hilbert spaces, another definition of basis

than for vector spaces, see also [8] §6.2.

Definition 4.3. An orthonormal subset S of a Hilbert space V is called complete when S⊥ := {x ∈
V : ∀s∈S 〈x, s〉 = 0} is zero. A complete orthonormal subset of a Hilbert space V is called a Hilbert
basis of V .

Loosely speaking this means that, when taking linear combinations of the elements of a Hilbert
basis, infinitely many coefficients are allowed to be non-zero, as long as the series (or even integral)
converges. In what follows we will mean, whenever necessary, “Hilbert basis” when writing “basis”.

The fact that C(G) is dense in L2(G) means that every f ∈ L2(G) is the limit of a sequence
(fi)i≥0 with fi ∈ C(G). This is equivalent with the fact that f can be written as a sum of elementen
in C(G): f = f0 +

∑∞
i=0(fi+1 − fi).

The vector space C(G) is a representation of the Lie group G for the action by right translations
(gf)(x) := f(xg) for f ∈ C(G) and g ∈ G. As elements of L2(G) cannot be evaluated in elements
of g, we cannot just say, for f ∈ L2(G), that (gf)(x) := f(xg), but instead we can say that the
action of g ∈ G on C(G) is linear and preserves the inner product, hence extends uniquely to an
automorphism of L2(G), and we say that it is still by right translations.

4.3 The Peter-Weyl theorem

Theorem 4.4. Let G ⊂ GLn(C) for an n ∈ N be a compact Lie group, with Haar measure µ and
{(Vi, ρi)|i ∈ I} a set of representatives of the isomorphism classes of irreducible finite dimensional
representations of G. Then the maps EndC(Vi)→ L2(G) given by m 7→ (g 7→ m(g) := tr(ρi(g) ·m))
together give an isomorphism of G-representations

L2(G) ∼=
⊕̂

i∈I
EndC(Vi) .

Here ⊕̂ is a Hilbert direct sum, a sum in which elements are convergent series.
Let 〈·, ·〉 be a G-invariant inner product on Vi and vi := (vi,1, ..., vi,dim(Vi)) an orthonormal basis

of Vi. Then the
√

dim(Vi)fi,j,k with fi,j,k in C(G) given by

fi,j,k(g) := Ek,j(g) = tr(ρi(g) · Ek,j) = ρi(g)j,k = 〈ρi(g)vi,k, vi,j〉 ,

where Ek,j is the matrix with (k, j)-coefficient 1 and further only zeros and ρi(g)j,k the (j, k)-
coefficient of the matrix of ρi(g) with respect to the basis vi, form an orthonormal basis of L2(G).

Proof. First we note that EndC(Vi) is a representation via left translations: gm = ρi(g) · m and
L2(G) via right translations: (gf)(x) = f(xg). The map in the theorem is C-linear and we have

(gm)(x) = tr(ρi(x) · (ρi(g) ·m)) = tr(ρi(xg) ·m) = m(xg) = g(m(x))

so EndC(Vi)→ L2(G) and
⊕̂

i∈IEndC(Vi)→ L2(G) are morphisms of representations.
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We can show that this last map is an isomorphism by showing that it is injective and surjec-
tive. Injectivity follows directly from the fact that the

√
dim(Vi)fi,j,k are orthonormal by Schur’s

orthogonality relations, to be proved now. Let V and V ′ be two irreducible representations of G
and u, v ∈ V and u′, v′ ∈ V ′. Then we have∫

g∈G
〈gu, v〉〈gu′, v′〉µ = 0 if V and V ′ are not isomorphic

=
〈u, u′〉〈v, v′〉

dim(V )
if V = V ′.

Proof. Let f : V → V ′ be an arbitrary linear map. Then, with

F (x) :=

∫
g∈G

g(f(g−1x))µ ,

F is a morphism of representations. Indeed we have F (hx) =
∫
g∈G g(f(g−1hx))µ and because for

all functions Q we have
∫
g∈GQ(g)µ =

∫
g∈GQ(hg)µ for h ∈ G we have

F (hx) =

∫
g∈G

(hg)(f((hg)−1hx))µ =

∫
g∈G

h(g(f(g−1x)))µ = hF (x) .

Suppose now that V and V ′ are not isomorphic, then F = 0 because V and V ′ are irreducible. Let
f : x 7→ 〈x, u〉u′. Then we have:

0 = 〈v′, F (v)〉 = 〈v′,
∫
g∈G

g(f(g−1v))µ〉

=

∫
g∈G
〈v′, g(f(g−1v))〉µ =

∫
g∈G
〈g−1v′, f(g−1v)〉µ

=

∫
g∈G
〈g−1v′, 〈g−1v, u〉u′〉µ =

∫
g∈G
〈g−1v, u〉〈g−1v′, u′〉µ

=

∫
g∈G
〈gu, v〉〈gu′, v′〉µ .

Suppose now that V = V ′, then F = λ1 for a λ ∈ C. W take f as above. Then we have:

λ · dim(V ) = tr(F ) =

dim(V )∑
i=1

〈F (vi), vi〉

=

∫
g∈G

dim(V )∑
i=1

〈g(f(g−1vi), vi〉µ =

∫
g∈G

tr(g ◦ f ◦ g−1)µ

=

∫
g∈G

tr(f)µ = tr(f) =

dim(V )∑
i=1

〈f(vi), vi〉

=

dim(V )∑
i=1

〈〈vi, u〉u′, vi〉 =

dim(V )∑
i=1

〈u′, vi〉〈vi, u〉 = 〈u′, u〉
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Hence:

〈u, u′〉〈v, v′〉
dim(V )

=
〈u′, u〉

dim(V )
〈v, v′〉 = λ〈v, v′〉 = 〈v′, F (v)〉

= ... =

∫
g∈G
〈gu, v〉〈gu′, v′〉µ

This proves Schur’s orthogonality relations, and the fact that the are
√

dim(Vi)fi,j,k orthonormal.
The proof of the surjectivity is more difficult and will not be given completely. An important

step is to show that vector space E ⊂ L2(G) spanned by the fi,j,k is closed under multiplication
and under complex conjugation, for which properties of dual vector spaces and tensor products of
vector spaces are used. For the proof see [2] section 12.4 and propositie 12.5 and for dual vector
spaces and for tensor products see [6] chapter 2 and appendix 4.

So E is a sub-C-algebra closed under complex conjugation. As G ⊂ GLn(C), the elements of
G are matrices. Consider now the functions xp,q ∈ L2(G) with 1 ≤ p, q ≤ n such that xp,q : G →
C : g 7→ (g)p,q, that is, xp,q is the (p, q)-coordinate function. If we can prove that xp,q ∈ E for all
(p, q) then it follows from the Stone-Weierstrass theorem that E = L2(G), with E the closure of E.
Indeed, the Stone Weierstrass theorem says that a continuous complex function f on a compact
subset C ⊂ Cn2

is the limit, for the sup norm, of sequence of polynomials in the n2 coordinates and
their conjugates, see also [8], §1.6. For this it follows that E is dense in L2(G), because the subspace
of continuous functions in L2(G) is dense in L2(G), and, on the space of continuous functions on
the compact space G, the sup norm is stronger than the L2-norm.

We show that xp,q ∈ E by noting that Cn together with the embedding ρ : G → GLn(C) is
a representation of G and hence is a direct sum of irreducible representations. Hence there is an
isomorphism of representations of G:

f :
⊕
i∈I

V mi
i −̃→ Cn ,

with mi ∈ N all but finitely many equal to 0 (recall that the (Vi)i∈I are the irreducible representa-
tions of G). On both sides of this isomorphism we have a basis: the standard basis of Cn, and, for
each i ∈ I, the chosen basis vi. The matrix of f with respect to these two bases expresses the xp,q
as linear combinations of the fi,j,k, and so the xp,q are in E.

4.4 Right or left?

In the previous section, we have viewed C(G) as a representation of G via the action of G on itself
by right-translations:

(g·f)(x) = f(xg) .

But suppose that we want to use left-translations:

(g•f)(x) = f(g−1x) ,

does that change the result of theorem 4.4? The answer is “no”, because the map

ι : G→ G , x 7→ x−1 ,
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is an isomorphism from G, with G acting by right-translations, to G with G action by left-
translations:

ι(xg) = (xg)−1 = g−1x−1 = g−1ι(x) .

Then the map

ι∗ : C(G)→ C(G) , f 7→ ι∗(f) , with (ι∗f)(x) = f(ι(x)) = f(x−1)

is an isomorphism from C(G), with G acting via left-translations, to C(G) with G acting by right-
translations:

(ι∗(g•f))(x) = (g•f))(x−1) = f(g−1x−1) = f((xg)−1) = f(ι(xg)) = (ι∗f)(xg) = (g·(ι∗f))(x) .

4.5 Inner Product on C[x, y]d
In the next part we will apply the Peter-Weyl theorem to the irreducible representations of G =
SU(2), and the Vd = C[x, y]d. The Peter-Weyl theorem requires that we choose a G-invariant inner
product on Vd. We note that SU(2) leaves the standard inner product on C2 invariant. We consider
the elements of Vd as functions C2 → C and choose as inner product:

〈f, g〉 :=

∫
v∈C2

‖v‖=1

fg µSU(2)

with µSU(2) the usual volume form on S3 ⊂ R4 = C2 (, see further down, it is SO(4)-invariant,
hence SU(2)-invariant) and f, g ∈ Vd. This inner product is automatically SU(2)-invariant.

Theorem 4.5. Let d ∈ N. Then (xd, xd−1y, . . . , yd) is an orthogonal basis of Vd.

Proof. We must show that for xayb and xa
′
yb
′

in Vd with a 6= a′ (and therefore b 6= b′), we have
〈xayb, xa′yb′〉 = 0. We do this by using the action of the diagonal subgroup of G. For t ∈ R let
λ(t) := eit, and let

Λ(t) :=

[
λ(t) 0

0 λ(t)−1

]
in SU(2).

Then we have, for all t ∈ R:

Λ(t)xayb = (λ(t)x)a(λ(t)−1y)b = λ(t)a−bxayb

Λ(t)xa
′
yb
′

= (λ(t)x)a
′
(λ(t)−1y)b

′
= λ(t)a

′−b′xa
′
yb
′

As a− b 6= a′ − b′ it holds for sufficiently general t that λ(t)a−b 6= λ(t)a
′−b′ , hence xayb and xa

′
yb
′

are eigenfunctions of Λ(t) with distinct eigenvalues. The we have:

〈xayb, xa
′
yb
′
〉 = 〈Λ(t)xayb,Λ(t)xa

′
yb
′
〉 = λ(t)a−bλ(t)−1(a

′−b′)〈xayb, xa
′
yb
′
〉

and because λ(t)a−bλ(t)−1(a
′−b′) 6= 1 we get that 〈xayb, xa′yb′〉 = 0.

Now that we know that (xd, ..., yd) is orthogonal, all that is left to do is to scale them, with factors
say λd,j , such that (λd,dx

d, λd,d−1x
d−1y, ..., λd,0y

d) is orthonormal. For this, we must compute the
〈xjyd−j , xjyd−j〉.
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For working with S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} we use the Hopf coordinates:

z1 = eiξ1 sin η

z2 = eiξ2 cos η

where ξ1 and ξ2 range over [0, 2π] and η over [0, π/2]. The volume form is then

dV = sin η cos η |dη ∧ dξ1 ∧ dξ2|

Then, as Maple tells us,

〈xjyd−j , xjyd−j〉 =

∫ 2π

ξ2=0

∫ 2π

ξ1=0

∫ 1/2π

η=0

sin η2j+1 cos η2(d−j)+1 dη dξ1 dξ2

= 4π2 Γ(d− j + 1)Γ(j + 1)

2Γ(d+ 2)

= 4π2 1

2(d+ 1)

j!(d− j)!
d!

=
2π2

d+ 1

(
d
j

)−1
So we scale xjyd−j with a factor

λd,j :=
1

π

√(
d
j

)
d+ 1

2
,

and then (λd,dx
d, . . . , λd,0y

d) is an orthonormal basis for C[x, y]d.

5 Spherical harmonic functions

5.1 Introduction

In the previous sections we have treated, in as compact a way as possible, the representation theory
of compact Lie groups, culminating in the Peter-Weyl theorem. In addition, we have determined the
irreducible representations of SU(2) and of SO(3), using the double cover of SO(3) by SU(2). Now
we apply all this theory to realise the goal of this thesis: determining the usual spherical-harmonic
functions that form a basis of the Hilbert space L2(S2), the space of square integrable functions on
the sphere S2.

Recall from definition 4.3 that to give a Hilbert basis for L(S2) it suffices to give an orthonormal
collection of functions in C(S2) that is complete. We will do this by relating S2 with SO(3), more
precisely, we will view S2 as a quotient of SO(3).

5.2 Determination of a Hilbert basis for L2(S2)

From section 3.4 it follows that G = SO(3) acts in a natural way on S2 via matrix multiplication,
and that an element g ∈ G can be seen as a rotation. As a base point in S2 we take N = (0, 0, 1)
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(N for“north pole”). The stabiliser of N is the group of rotations about the z-axis, and is isomorphic
with S1 = R/2πZ via the map:

ϕ 7→

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 .
This gives us a surjective differentiable map with surjective derivative

F : G→ S2 , g 7→ g·N ,

with F−1(g·N) = gS1; it is a quotient for the action of S1 on G by right-translations. The map
F is equivariant for the action by G on G by left-translations and on S2 by matrix multiplication:
F (g1g2) = (g1g2)·N = g1·(g2·N) = g1·F (g2). As the Haar measure µG with volume 1 on G is
invariant under the right-translations by S1, it induces, via F , the G-invariant measure µS2 on S2.
This means that for f1 and f2 in C(S2) we have∫

S2

f1f2µS2 =

∫
G

(f1 ◦ F )(f2 ◦ F )µG .

Hence, with

C(G)S
1

:= {f ∈ C(G) | ∀g ∈ G , ∀ϕ ∈ S1, f(gϕ) = f(g)} ,

the map
F ∗ : C(S2)→ C(G) : f 7→ f ◦ F .

preserves inner products, has image C(G)S
1

, and gives an isomorphism of inner product spaces from

C(S2) to C(G)S
1

. So, we get a Hilbert basis for L2(S2) by applying the inverse of this isomorphism

to an orthonormal complete subset of C(G)S
1

. And to obtain such a subset, we will apply the

standard orthogonal projection C(G) → C(G)S
1

, to be defined in a moment, to a suitably chosen
complete orthonormal subset of C(G) (all elements in it are eigenvectors for S1).

The averaging map that sends f in C(G) to the function F∗(f) : G → C, g 7→
∫
ϕ∈S1 f(gϕ)µS1 .

One checks, using that integration is continuous for the sup-norm, that F∗(f) is in C(G), and in

fact in C(G)S
1

. Moreover we have that, for f ∈ C(G)S
1

, F∗(f) = f , hence F 2
∗ = F∗, that is, F∗ is

an idempotent. It is a nice exercise to show that F∗ is self-adjoint: for all f1 and f2 in C(G) we

have 〈F∗(f1), f2〉 = 〈f1, F∗(f2)〉. From this it follows that C(G) = ker(F∗)⊕ C(G)S
1

, and that the
2 summands are orthogonal to each other. So F∗ is the orthogonal projection from C(G). Anyway,

if now S is a complete subset of C(G), then we claim that F∗(S) is a complete subset of C(G)S
1

.

Here is a proof. Suppose that f in C(G)S
1

is orthogonal to F∗(S). Then for all s in S we have
0 = 〈f, F∗s〉 = 〈F∗f, s〉 = 〈f, s〉, hence f = 0 by the completeness of S.

Now is the moment that we produce our complete orthonormal set in C(G) that has the desired
propery: every element is an eigenvector for S1. The irreducible representations (up to isomorphism)
of G are the representations Vl = C[x, y]2l, for l ≥ 0, of SU(2), viewed as representations of G via the
morphism SU(2)→ SO(3) obtained from the action by conjugation of SU(2) on V (the quaternions
of trace zero) via the basis (J,K, I) of V . The reason for this choice of basis is that the I = ( i 0

0 −i ),
as element of SU(2), is diagonal, so that our orthonormal basis vl,j = λ2l,jx

jy2l−j , with 0 ≤ j ≤ 2l,
of Vl from section 4.5, consists of eigenvectors for the diagonal subgroup of SU(2). The conjugation
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by this subgroup fixes the element I of V , hence we want this subgroup to be sent to the stabiliser
of N = (0, 0, 1) in S2 ⊂ R3.

The theorem 4.4 of Peter-Weyl says that the
√

2l + 1fl,j,k with l ≥ 0, 0 ≤ j, k ≤ 2l, form a
complete orthonormal set of C(G), where, for all g ∈ G, fl,j,k(g) = 〈ρl(g)vl,k, vl,j〉.

We compute how ϕ ∈ S1 ⊂ G acts on the fl,j,k. The 2 preimages in SU(2) of ϕ are these:

±
(
eiϕ/2 0

0 e−iϕ/2

)
7→

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


So we have:

ρl(ϕ)vl,k =

(
eiϕ/2 0

0 e−iϕ/2

)
xky2l−k = e(2k−2l)iϕ/2xky2l−k = e(2k−2l)iϕ/2vl,k .

For g ∈ G, we have

fl,j,k(gϕ) = 〈ρl(gϕ)vl,k, vl,j〉 = 〈ρl(g)ρl(ϕ)vl,k, vl,j〉 = 〈ρl(g)e(2k−2l)iϕ/2vl,k, vl,j〉
= e(2k−2l)iϕ/2fl,j,k(g) .

We conclude that F∗(fl,j,k) = 0 if k 6= l and that F∗(fl,j,l) = fl,j,l. Hence the fl,j,l, with 0 ≤ l and

0 ≤ j ≤ 2l form a complete orthonormal set in C(G)S
1

.
Now it remains to compute the images Yl,j of the

√
2l + 1fl,j,l under the inverse of our isomor-

phism F ∗ : C(S2) → C(G)S
1

. This means that for a point P in S2, we must find an h in SU(2)
such that h·N = P and then take the value

Yl,j(P ) =
√

2l + 1fl,j,l(h) =
√

2l + 1〈h·vl,l, vl,j〉 .

To do so, we write points in S2 in the usual spherical coordinates:

P (θ, ϕ) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) , with 0 ≤ θ ≤ π, −π ≤ ϕ ≤ π.

We observe that (draw the usual picture for spherical coordinates, and note the rotation over θ
about the y-axis followed by the rotation over ϕ about the z-axis): sin(θ) cos(ϕ)

sin(θ) sin(ϕ)
cos(θ)

 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 ·
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 0
0
1

 .

We need the inverse images in SU(2) of the 2 matrices just above. These are ±e(ϕ/2)I and ±e(θ/2)K
(exponentials in H) because, with our choices, the z-axis corresponds to I and the y-axis to K.
Writing these exponentials out as complex 2 by 2 matrices we get:

h = h2h1 , h2 =

(
eiϕ/2 0

0 e−iϕ/2

)
, h1 =

(
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
.

Then
Yl,j(P (θ, ϕ)) =

√
2l + 1〈h2h1·vl,l, vl,j〉 =

√
2l + 1〈h1·vl,l, h−12 ·vl,j〉

=
√

2l + 1λ2l,l λ2l,j e
iϕ(j−l)〈h1·xlyl, xjy2l−j〉 .
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We compute h1·xlyl. Note that h1 gives the automorphism of the C-algebra C[x, y] with

h1 : x 7→ cos(θ/2)x+ i sin(θ/2)y , h1 : y 7→ i sin(θ/2)x+ cos(θ/2)y .

Hence
h1·xlyl =

(
cos(θ/2)x+ i sin(θ/2)y

)l(
i sin(θ/2)x+ cos(θ/2)y

)l
.

Using Newton’s binomial identity, we get

h1·xlyl =

2l∑
j=0

cl,jx
jy2l−j , cl,j =

∑
0≤n,m≤l
n+m=j

(
l

n

)(
l

m

)
cos(θ/2)n+l−m

(
i sin(θ/2)

)m+l−n
.

It follows that
〈h1·xlyl, xjy2l−j〉 = λ−22l,jcl,j .

So our final result is that the Yl,j with l ∈ N and 0 ≤ j ≤ 2l, given by:

Yl,j(P (θ, ϕ)) =
√

2l + 1λ2l,l λ2l,j e
iϕ(j−l) cl,j =

=
√

2l + 1

(
2l

l

)1/2(
2l

j

)−1/2
eiϕ(j−l)

∑
0≤n,m≤l
n+m=j

(
l

n

)(
l

m

)
cos(θ/2)n+l−m

(
i sin(θ/2)

)m+l−n
,

form an orthonormal Hilbert-basis of L2(S2).

5.3 Examples

We make a few cases more explicit. For l = 0 we have j = 0 and n = m = 0, and that gives:

Y0,0(P (θ, ϕ)) = 1 .

It is nice to note that indeed
∫
S2 Y0,0µS2 = 1, as µS2 has been normalised for this to hold, it is

the invariant probability measure. Physicists often use the invariant volume form on S2 that comes
from the euclidean metric on R3 and then the area of S2 is 4π, which means that their constant
spherical harmonic has value 1/

√
4π.

Let us now take l = 1. Then j ∈ {0, 1, 2}. For j = 0 we have n = m = 0, for j = 1 there are 2
cases, n = 0 and m = 1, n = 1 and m = 0. For j = 2 we have n = m = 1. This gives us:

Y1,0(P (θ, ϕ)) =
√

3/2 ie−iϕ sin(θ) ,

Y1,1(P (θ, ϕ)) =
√

3 cos(θ) ,

Y1,2(P (θ, ϕ)) =
√

3/2 ieiϕ sin(θ) .

For l = 2 we have j ∈ {0, 1, 2, 3, 4}. We find:

Y2,0(P (θ, ϕ)) = 4−1
√

30 e−2iϕ(cos(θ)2 − 1) ,

Y2,1(P (θ, ϕ)) = 2−1
√

30 e−iϕi cos(θ) sin(θ) ,

Y2,2(P (θ, ϕ)) = 2−1
√

5
(
3 cos(θ)2 − 1

)
,

Y2,3(P (θ, ϕ)) = 2−1
√

30 eiϕi cos(θ) sin(θ) ,

Y2,4(P (θ, ϕ)) = 4−1
√

30 e2iϕ(cos(θ)2 − 1) .

22



All these functions are, up to the factor 1/
√

4π that we already explained, equal to the spherical-

harmonic functions as given in [5], table 4.3, with the dictionary that our Yl,j corresponds to Y j−ll

there (j − l is the number that gives the action of S1 acting on S2, we will come back to this).
In figures 2, 3 and 4 the Yl,j are visualised as follows: the set {|Yl,j(P )|·P : P ∈ S2} is plotted

for l = 0, 1, 2, but then without the normalising constants. For example, for l = 1 and j = 0 it is
the parametrised plots of the function

[0, π]× [−π, π]→ R3 , (θ, ϕ) 7→ |ie−iϕ sin(θ)|·(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) .

It is a bit unfortunate that, in these plots, the argument of the Yl,j is not visible. w would need a
second series of plots for that, or some informative colour coding in the given plots.

We note that the collection of Y ml is not the only orthonormal basis of L2(S2)! A priori many
more choices are possible. We see this in the choices we had for the basis of V and of the orthonormal
basis for C[x, y]d. So it appears more or less as a coincidence that the we find the orthonormal basis
that is used in quantum mechanics! That this is not a coincidence at all is made clear in the next
chapter, about the relation between the mathematics of the preceding sections and physics.

5.4 Quantum mechanics and the hydrogen atom

The foundations quantum mechanics have been laid in the beginning of the 20th century by many
famous scientists such as Heisenberg, Planck, Schrödinger, Pauli and many others. Thus it is a
relatively modern theory and still now it is, together with the theory of relativity, one of the most
fundamental theories in physics.

Quantum mechanics meant a radical revolution in physics: while before it the state of an object
was described by a point in phase space, and observables by functions on this space — think of
a particle with a certain speed and position: the state of the particle is described by the vector
(x1, x2, x3, v1, v2, v3) ∈ R6, and its kinetic energy by the function (. . .) 7→ 1

2m(v21 + v22 + v23) — in
quantum mechanics the state of the object is described by a (wave) function in a complex Hilbert
space and an observable by a self-adjoint linear operator on the same space. These operators
typically do not commute with each other, so one can view these operators as elements of a Lie
algebra with a non-trivial Lie bracket.

A beautiful example of this are the operators Lx, Ly and Lz that correspond, respectively, to
the x, y, and z-components of the angular momentum of a particle. These operators are given by
the equation for the angular momentum (from classical mechanics):

−→
L = −→r ×−→p

with −→r the position operator and −→p the momentum operator given by −→p = ~
i

−→
∇. When one choses

the units such that ~ = 1, then one has

[Lx, Ly] = iLz, [Ly, Lz] = iLx, [Lz, Lx] = iLy

In this case we see, after some thought, that if one makes the following identifications:

Lx 7→ i

2
I

Ly 7→ i

2
J

Lz 7→ i

2
K ,
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Figure 2: l = 0, the function “r = 1”.

Figure 3: l = 1, the functions “r = sin θ” (left), “r = | cos θ|” (right).

Figure 4: l = 2, the functions “r = (sin θ)2” (left), “r = | cos θ| sin θ” (middle) and “r = |3 cos θ− 1|”
(right).

24



the real vector space spanned by Lx, Ly, Lz is, as Lie algebra, isomorphic with su(2). The action of
the operators Lx, Ly and Lz then gives an action of su(2) on the Hilbert space of wave functions.
It appears, see [7], chapter 8, section 3, that this action of su(2) matches the rotations of the space,
as follows. Let R ∈ SO(3). Then R acts on the wave function Ψ(−→x ) as

RΨ(−→x ) = Ψ(−→x ·R)

The induced action of the Lie algebra so(3) (∼= su(2)) is then “the same”.
The time evolution of the function Ψ(x, t) that describes the state of the object is given by the

Schrödinger equation:

i~
∂Ψ

∂t
= HΨ .

Here H = p2

2m +V with V the potential. In the case of the hydrogen atom the “object” that we study
is the electron subject to the electric potential of a proton sitting at the origin. In this case the
potential V does not depend on time, and therefore there is a set of stationairy states Ψi, (i > 0),
spanning the Hilbert space and where every Ψi has a time independent factor ψi that satisfies the
time independent Schrödinger equation:

Hψi = Eiψi

with Ei ∈ R the energy of ψi. As the potential V depends only on the distance to the origin, the
hamiltonian H is invariant is under rotations, that is, under the action of SO(3) defined above. It
follows that the operators Lx, Ly and Lz each commute with H and that each has a common set of
eigenfunctions with H, see [5] or [7]. In the quantum mechanics one mostly uses the eigenfunctions
of Lz and H. In spherical coordinates an eigenfunction ψi depends on (r, θ, ϕ). For a fixed r = r0,
ψi(r0, θ, ϕ) is in L2(S2), and hence can be written as

ψi(r0, θ, ϕ) =
∑
j

Rj(r0)Yj(θ, ϕ)

for a basis {Yj | j ∈ J} of L2(S2). As H and Lz commute, one can ask that the Yj are normalised
orthogonal eigenfunctions of Lz. These Yj arise in quantum mechanics as the spherical harmonic
functions and form an orthonormal basis of eigenfunctions of Lz in L2(S2).

From the above we see how important the theory of Lie groups and their representations is for
moderne physics, and in particular for quantum mechanics. Operators form a Lie algebra and the
space of wave functions with the action of operators form a representation. The theory of spin
is a beautiful example of this. Where angular momentum has a classical analog, spin is a purely
mathematical construction. The Lie algebra su(2) acts on an irreducible representation C[x, y]d
of SU(2). In contrast with the more “physical” group SO(3), representations can now be also of
odd degree d zijn. Analogous to the definition of l in section 5.3, now we have s = 1

2d. This explains
the curious fact that the spin can be half integer! See also [5], chapter 4. As stationairy states of
the spin one searches for an orthonormal basis of eigenvectors of i

2K for C[x, y]2s. Take for example
the electron, it has s = 1

2 . Then { xπ ,
y
π} form an orthonormal basis for C[x, y]1. An eigenvector of

i
2K is a eigenvector of K, so we search eigenvectors of the matrix

K =

[
0 i
i 0

]
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We have

K(x+ y) = i(x+ y)

K(x− y) = −i(x− y)

hence

(

√
2

π
(x+ y),

√
2

π
(x− y))

form an orthonormal basis of eigenvectors of K. This gives eigenvalues of − 1
2 and 1

2 for i
2K,

respectively, corresponding to the familiar spin up and down states of ~
2 and −~

2 for ~ = 1.
In the preceding chapters we have noticed the amount of freedom in choosing a basis: we could

freely choose the basis for V , and also the orthonormal basis for C[x, y]d. So it was a “coincidence”
that we got the right orthonormal basis of L2(S2) via our choices. That this is not a complete
coincidence can be understood as follows: the basis that we seek is one of eigenfunctions of

Lz = xpy − ypx = i~y
∂

∂x
− i~x ∂

∂y
.

As mentioned above angular momentum operators correspond with elements of so(3) as follows:
take the infinitesimal rotation about the z-as, Rz(ε) ∈ SO(3). It acts on a function ψ(x, y, z) as

Rz(ε)(ψ(x, y, z)) = ψ

(x, y, z) ◦

 cos(ε) − sin(ε) 0
sin(ε) cos(ε) 0

0 0 1


≈

(x, y, z) ◦

 1 −ε 0
ε 1 0
0 0 1


= ψ(x+ εy, y − εx, z)

≈ ψ(x, y, z) + ε

(
y
∂ψ

∂x
− x∂ψ

∂y

)
= (1 +

ε

i~
Lz)ψ(x, y, z)

As Rz(ε) = 1 + εσ with σ =

 0 −1 0
1 0 0
0 0 0

 ∈ so(3), ψ is an eigenfunction of Lz iff it is an

eigenfunction of σ ∈ so(3). In section 5.2 we have chosen the map su(2) → so(V ) → so(3) so that
σ corresponded with the matrix I ∈ su(2) up to a scalar factor.

From the same section it follows that the functions fi,j,k could be written as fi,j,k(g) = 〈ρi(g)vij , vik〉.
The action of Rz(ε) then gives

Rz(ε)(fi,j,k(g)) = fi,j,k(g ·Rz(ε)) = 〈ρi(g) · ρi(Rz(ε))vij , vik〉

and this gives the action of σ:

σ(fi,j,k(g)) = 〈ρi(g)
1

2
Ivij , vik〉
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But as we chose the basis {vi1, ..., vid} of Vi so that it consisted of eigenvectoren of I, see section 4.5,
we have

σ(fi,j,k(g)) = λ〈ρi(g)vij , vik〉 = λfi,j,k(g)

for a certain λ. That’s why the functions fi,j,k(g) are eigenfunctions of σ and Lz. We could of
course have chosen the map so(V ) → so(3) so that σ would correspond with K, or an arbitrary
other element in su(2), but then we should have chosen our orthonormal basis of Vi so that it
consisted of eigenvectors of this arbitrary element. The choices I have made in this thesis are in my
eyes the choices that make the computations easiest.

6 Finally . . .

By computing the the spherical harmonic functions via representation theory of compact Lie groups
I have reached the goal of my thesis. On my way to this goal I have treated, briefly, differentiable
manifolds, Lie groups, Lie algebras and representations. I have delved deeper into the irreducible
representations of SU(2), their bases, the covering SU(2) → SO(3) and the Peter Weyl theorem.
All this has enabled me to compute the spherical-harmonic functions. The result agrees with the
literature, a fine reward for all this theory. Finally I have briefly touched upon applications of the
theory to quantum mechanics, with an explanation of how spin relates to su(2) and some explanation
of how angular momentum operators relate to so(3). In my research I have amply used the sources
below and I have tried to refer, at important points, to the relevant literature. But what does not
show in the bibliography is the help that I got from my three enthusiastic supervisors, Theo van
den Bogaart, Gerard Nienhuis and Bas Edixhoven. Many thanks!
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