Training session 1 'Groups and symmetries in geometry'

1. Recall that $\operatorname{Aff}\left(\mathbb{R}^{2}\right)$ is the group of bijections $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the form $f(x)=A x+b$, with $A \in \mathrm{GL}_{2}(\mathbb{R})$ and $b \in \mathbb{R}^{2}$.
(a) Show that the map $F: \mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \operatorname{Aff}\left(\mathbb{R}^{2}\right)$ that sends (b, A) to the affine transformation $f_{b, A}: x \mapsto A x+b$ is bijective.
(b) Compute the group law on $\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R})$ obtained, via F, from the group law on $\operatorname{Aff}\left(\mathbb{R}^{2}\right)$.
(c) The center of a group G is the subset $\left\{g \in G: \forall_{h \in G} g h=h g\right\}$. Determine the center of $\operatorname{Aff}\left(\mathbb{R}^{2}\right)$.
(d) Is $\operatorname{Aff}\left(\mathbb{R}^{2}\right)$ isomorphic to the $\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R})$ with the product group law $\left(b_{1}, A_{1}\right) \cdot\left(b_{2}, A_{2}\right)=\left(b_{1}+b_{2}, A_{1} A_{2}\right) ?$
2. The lines in \mathbb{R}^{2} are the subsets of the form $\{p+\lambda v: \lambda \in \mathbb{R}\}$, with $p \in \mathbb{R}^{2}$ and $v \in \mathbb{R}^{2}-\{0\}$.
(a) Draw a picture of a line in \mathbb{R}^{2} given by a p and v of your choice.
(b) Let x, y, z in \mathbb{R}^{2} be distinct and not all 3 on a line. Show that there is a unique $f \in \operatorname{Aff}\left(\mathbb{R}^{2}\right)$ such that $f(x)=0, f(y)=(1,0)$ and $f(z)=(0,1)$.
3. The group $\operatorname{Aff}(\mathbb{R})$ is the group of bijections $f: \mathbb{R} \rightarrow \mathbb{R}$ of the form $f: x \mapsto a x+b$. Let $x, y \in \mathbb{R}$ be distinct. Show that there is unique $f \in \operatorname{Aff}(\mathbb{R})$ such that $f(x)=0$ and $f(y)=1$.
4. We can do linear algebra with any field F, in particular, for a prime number p, with the field \mathbb{F}_{p} (also denoted $\mathbb{Z} / p \mathbb{Z}$).
(a) Define, for any field F, the groups $\operatorname{Aff}(F)$ and $\operatorname{Aff}\left(F^{2}\right)$.
(b) Let p be a prime number. Show that the groups $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$ and $\operatorname{Aff}\left(\mathbb{F}_{p}^{2}\right)$ are finite, and find out how many elements they have.
5. Assume that $f \in \operatorname{Sym}\left(\mathbb{R}^{2}\right)$ has the following property: for every line L in $\mathbb{R}^{2}, f(L)$ and $f^{-1}(L)$ are lines. Show that $f \in \operatorname{Aff}\left(\mathbb{R}^{2}\right)$. Actually, this exercise is very hard, so you are not expected to solve it. But at least play a bit with it, and for the next lecture, prepare a question about this. I will ask a few students to state their question.
