Training session 2 'Groups and symmetries in geometry'

Give arguments for all your claims. Write complete sentences, including quantifiers.

- 1. Let $\sigma \colon \mathbb{R} \to \mathbb{R}$ be a ring morphism (this means that $\sigma(0) = 0$ and $\sigma(1) = 1$ and, for all x and y in \mathbb{R} , we have $\sigma(x+y) = \sigma(x) + \sigma(y)$ and $\sigma(xy) = \sigma(x)\sigma(y)$).
 - (a) Show that for all $n \in \mathbb{Z}$, $\sigma(n) = n$.
 - (b) Show that for all $q \in \mathbb{Q}$, $\sigma(q) = q$.
 - (c) Show that $\forall x, y \in \mathbb{R} (x \leq y \implies \sigma(x) \leq \sigma(y))$. Hint: $x \leq y$ is equivalent to $y x \geq 0$, and then consider which real numbers are squares.
 - (d) Show that $\sigma = \mathrm{id}_{\mathbb{R}}$ (meaning that $\forall x \in \mathbb{R} \sigma(x) = x$).
 - (e) Of the following list of properties of ℝ, which one(s) do you *not* need in the previous part?
 - (a) (\mathbb{R} is real closed) Every $x \in \mathbb{R}$ with $x \ge 0$ is a square.
 - (b) (\mathbb{R} is archimedean) For every $x \in \mathbb{R}$ there is an $n \in \mathbb{N}$ with $n \ge x$.
 - (c) (\mathbb{R} is complete) Every Cauchy sequence in \mathbb{R} converges.
 - (d) (supremum property) Every non-empty bounded subset of \mathbb{R} has a supremum.
- 2. Let $G := \mathrm{SU}(2)$, the group of $g \in \mathrm{M}_2(\mathbb{C})$ such that $\det(g) = 1$ and $\overline{g}^t \cdot g = 1_2$.
 - (a) Show that an element $g \in M_2(\mathbb{C})$ is in SU(2) if and only if (i): its columns form an orthonormal basis of \mathbb{C}^2 for the standard complex inner product, and (ii): det(g) = 1.
 - (b) Show that $SU(2) = \{ \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} : |a|^2 + |b|^2 = 1 \}.$
 - (c) Conclude that SU(2) is the unit 3-sphere in $\mathbb{C}^2 = \mathbb{R}^4$, and so is a 3-dimensional (real) manifold.
 - (d) Compute the tangent space $T_{SU(2)}(1_2)$, and show that the matrices I, J and K on page 5 of the lecture notes form a basis of it.
 - (e) Verify by hand that $T_{SU(2)}(1_2)$ is a sub-Lie-algebra of the real Lie-algebra $M_2(\mathbb{C})$. This means: compute the commutators of I, J and K and verify that these are \mathbb{R} -linear combinations of I, J and K.