Training session 2 'Groups and symmetries in geometry'

Give arguments for all your claims. Write complete sentences, including quantifiers.

1. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a ring morphism (this means that $\sigma(0)=0$ and $\sigma(1)=1$ and, for all x and y in \mathbb{R}, we have $\sigma(x+y)=\sigma(x)+\sigma(y)$ and $\sigma(x y)=\sigma(x) \sigma(y))$.
(a) Show that for all $n \in \mathbb{Z}, \sigma(n)=n$.
(b) Show that for all $q \in \mathbb{Q}, \sigma(q)=q$.
(c) Show that $\forall x, y \in \mathbb{R}(x \leq y \Longrightarrow \sigma(x) \leq \sigma(y))$. Hint: $x \leq y$ is equivalent to $y-x \geq 0$, and then consider which real numbers are squares.
(d) Show that $\sigma=\mathrm{id}_{\mathbb{R}}$ (meaning that $\forall x \in \mathbb{R} \sigma(x)=x$).
(e) Of the following list of properties of \mathbb{R}, which one(s) do you not need in the previous part?
(a) (\mathbb{R} is real closed) Every $x \in \mathbb{R}$ with $x \geq 0$ is a square.
(b) (\mathbb{R} is archimedean) For every $x \in \mathbb{R}$ there is an $n \in \mathbb{N}$ with $n \geq x$.
(c) (\mathbb{R} is complete) Every Cauchy sequence in \mathbb{R} converges.
(d) (supremum property) Every non-empty bounded subset of \mathbb{R} has a supremum.
2. Let $G:=\mathrm{SU}(2)$, the group of $g \in \mathrm{M}_{2}(\mathbb{C})$ such that $\operatorname{det}(g)=1$ and $\bar{g}^{t} \cdot g=1_{2}$.
(a) Show that an element $g \in \mathrm{M}_{2}(\mathbb{C})$ is in $\mathrm{SU}(2)$ if and only if (i): its columns form an orthonormal basis of \mathbb{C}^{2} for the standard complex inner product, and (ii): $\operatorname{det}(g)=1$.
(b) Show that $\mathrm{SU}(2)=\left\{\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right):|a|^{2}+|b|^{2}=1\right\}$.
(c) Conclude that $\mathrm{SU}(2)$ is the unit 3 -sphere in $\mathbb{C}^{2}=\mathbb{R}^{4}$, and so is a 3-dimensional (real) manifold.
(d) Compute the tangent space $T_{\mathrm{SU}(2)}\left(1_{2}\right)$, and show that the matrices I, J and K on page 5 of the lecture notes form a basis of it.
(e) Verify by hand that $T_{\mathrm{SU}(2)}\left(1_{2}\right)$ is a sub-Lie-algebra of the real Lie-algebra $\mathrm{M}_{2}(\mathbb{C})$. This means: compute the commutators of I, J and K and verify that these are \mathbb{R}-linear combinations of I, J and K.
