Training session 3 'Groups and symmetries in geometry'

Give arguments for all your claims. Write complete sentences, including quantifiers.

1. Let n be in \mathbb{N}.
(a) Prove that for all $A \in \mathrm{M}_{n}(\mathbb{C})$ the series $e^{A}:=\sum_{m \geq 0} \frac{1}{m!} A^{m}$ converges in $\mathrm{M}_{n}(\mathbb{C})$. Hint: choose a norm on $\mathrm{M}_{n}(\mathbb{C})$, for example $\|A\|:=\max \left\{\left|A_{i, j}\right|: 1 \leq i, j \leq n\right\}$, or any other norm (they are all equivalent).
(b) Show that for A and B in $\mathrm{M}_{n}(\mathbb{C})$ with $A B=B A$ we have $e^{A+B}=e^{A} e^{B}$.
(c) Give A and B in $\mathrm{M}_{n}(\mathbb{C})$ such that $e^{A+B} \neq e^{A} e^{B}$.
(d) Show that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$. Hint: show that it suffices to prove it for diagonalisable A, and then reduce to diagonal A.
2. Let G be a Lie group. Show that $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g}), g \mapsto\left(D \psi_{g}\right)(1)$ is a representation of G on \mathfrak{g}. Here $\psi_{g}: G \rightarrow G, h \mapsto g h g^{-1}$, and $\left(D \psi_{g}\right)(1): \mathfrak{g} \rightarrow \mathfrak{g}$ is the derivative of ψ_{g} at the identity element 1 of G. See also Benthem's BSc thesis. First consider the case $G=\mathrm{GL}_{n}$.

This question can be generalised as follows. Let X be a manifold and let G act on X, such that the map $G \times X \rightarrow X$ is a morphism of manifolds. Suppose that G fixes a point x in X, Then G acts on the tangent space $T_{X}(x)$ and this is a representation of G on $T_{X}(x)$.
3. Let G be a group, let X be a set, and $G \times X \rightarrow X,(g, x) \mapsto g \cdot x$ an action of G on X.
(a) Let \mathbb{C}^{X} be the set of all functions $f: X \rightarrow \mathbb{C}$. Show that $G \times \mathbb{C}^{X} \rightarrow \mathbb{C}^{X}$, $(g, f) \mapsto g \bullet f$, with, for all $x \in X,(g \bullet f)(x)=f\left(g^{-1} x\right)$, is an action of G on \mathbb{C}^{X}.
(b) Show that the action in the previous part is linear, where addition and scalar multiplication in \mathbb{C}^{X} are point-wise $\left(\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x),(\lambda \cdot f)(x)=\lambda \cdot(f(x))\right)$, hence makes \mathbb{C}^{X} into a representation of G.
(c) The \mathbb{C}-vector space \mathbb{C}^{X} is even a \mathbb{C}-algebra: $\left(f_{1} \cdot f_{2}\right)(x)=f_{1}(x) \cdot f_{2}(x)$ (point-wise multiplication). Show that the action in the previous part is by \mathbb{C}-algebra automorphisms: for each g in G, the map $\mathbb{C}^{X} \rightarrow \mathbb{C}^{X}, f \mapsto g \bullet f$ is an isomorphism of \mathbb{C}-algebras.
(d) Now we take $G=\mathrm{SU}(2)$ and $X=\mathbb{C}^{2}$, and the action is $\left(\begin{array}{cc}a-\bar{b} \\ b & \bar{a}\end{array}\right) \cdot\binom{u}{v}=\binom{a u-\bar{b} v}{b u+\bar{a} v}$. In $\mathbb{C}^{X}=\mathbb{C}^{\left(\mathbb{C}^{2}\right)}$ we have the sub- \mathbb{C}-algebra $\mathbb{C}[x, y]$ of polynomial functions $\mathbb{C}^{2} \rightarrow \mathbb{C}$, with $x(u, v)=u$ and $y(u, v)=v$. Compute, for $\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right)$ in $\operatorname{SU}(2),\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right) \bullet x$ and $\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right) \bullet y$. You should find $\bar{a} x+\bar{b} y$ and $-b x+a y$.
(e) Conclude that the $\mathrm{SU}(2)$-action on \mathbb{C}^{X} preserves $\mathbb{C}[x, y]$, and that

$$
\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right) \bullet\left(x^{j} y^{k}\right)=(\bar{a} x+\bar{b} y)^{j} \cdot(-b x+a y)^{k}
$$

Show that this agrees with the identities on page 10 of Benthem's BSc thesis.
4. On page 12 of Benthem's BSc thesis it is written that $\operatorname{ker}(\mathrm{SU}(2) \rightarrow \mathrm{SO}(3))$ is the intersection of $\mathrm{SU}(2)=\{x \in \mathbb{H}: N(x)=1\}$ with the center $Z(\mathbb{H})=\{x \in \mathbb{H}: \forall y \in \mathbb{H}, x y=y x\}$, and that that intersection is $\{1,-1\}$. We provide details.
(a) Prove that $Z(\mathbb{H})=\mathbb{R} \cdot 1 \subset \mathbb{H}$.
(b) Prove that if $x \in \mathrm{SU}(2)$ is such that, for all $y \in \mathbb{R} \cdot I+\mathbb{R} \cdot J+\mathbb{R} \cdot K, x y x^{-1}=y$, then $x \in Z(\mathbb{H})$.
5. Prove the formula of Clebsch-Gordan, which means for us, prove that for d_{1} and d_{2} in $\mathbb{Z}_{\geq 0}$, there is an isomorphism of representations of $\mathrm{SU}(2)$:

$$
\mathbb{C}[x, y]_{d_{1}} \otimes \mathbb{C}[x, y]_{d_{2}} \longrightarrow \bigoplus_{\substack{d=\left|d_{1}-d_{2}\right| \\ d \equiv d_{1}+d_{2} \bmod 2}}^{d_{1}+d_{2}} \mathbb{C}[x, y]_{d}
$$

Hint: prove that both sides have the same character. Try first with small values for d_{1} and d_{2}. Physicists use this to understand the total angular momentum (around some given direction) of an atom with 2 electrons; see wikipedia.
6. (a) Let g be in $\mathrm{O}(3)$, with $g \neq \mathrm{id}$. Show that the complex eigenvalues λ of g satisfy $|\lambda|=1$, and that if λ is an eigenvalue, then so is $\bar{\lambda}$. Show that 1 or -1 is an eigenvalue of λ.
(b) Let g be in $\mathrm{SO}(3)$, with $g \neq \mathrm{id}$. Show that there is a unique $\phi \in[0, \pi]$ such that the complex eigenvalues of g are $1, e^{i \phi}$ and $e^{-i \phi}$. Deduce from this that there is an oriented orthonormal basis v_{1}, v_{2}, v_{3} of \mathbb{R}^{3} such that g is the rotation about the line $\mathbb{R} \cdot v_{3}$ over the angle ϕ, and that with respect to the oriented basis $v_{2}, v_{1},-v_{3} g$ is the rotation about $\mathbb{R} \cdot v_{3}$ over the angle $-\phi$.
(c) Make a character table for $\mathrm{SO}(3)$.

