
Training session 3 ‘Groups and symmetries in geometry’

Give arguments for all your claims. Write complete sentences, including

quantifiers.

1. Let n be in N.

(a) Prove that for all A ∈ Mn(C) the series eA :=
∑

m≥0
1
m!
Am converges in Mn(C).

Hint: choose a norm on Mn(C), for example ‖A‖ := max{|Ai,j| : 1 ≤ i, j ≤ n}, or

any other norm (they are all equivalent).

(b) Show that for A and B in Mn(C) with AB = BA we have eA+B = eAeB.

(c) Give A and B in Mn(C) such that eA+B 6= eAeB.

(d) Show that det(eA) = etr(A). Hint: show that it suffices to prove it for diagonalis-

able A, and then reduce to diagonal A.

2. Let G be a Lie group. Show that Ad: G → Aut(g), g 7→ (Dψg)(1) is a representation

of G on g. Here ψg : G → G, h 7→ ghg−1, and (Dψg)(1) : g → g is the derivative of ψg

at the identity element 1 of G. See also Benthem’s BSc thesis. First consider the case

G = GLn.

This question can be generalised as follows. Let X be a manifold and let G act on X,

such that the map G × X → X is a morphism of manifolds. Suppose that G fixes a

point x in X, Then G acts on the tangent space TX(x) and this is a representation of G

on TX(x).

3. Let G be a group, let X be a set, and G×X → X, (g, x) 7→ g·x an action of G on X.

(a) Let CX be the set of all functions f : X → C. Show that G × CX → CX ,

(g, f) 7→ g•f , with, for all x ∈ X, (g•f)(x) = f(g−1x), is an action of G on CX .

(b) Show that the action in the previous part is linear, where addition and scalar mul-

tiplication in CX are point-wise ((f1 + f2)(x) = f1(x) + f2(x), (λ·f)(x) = λ·(f(x))),

hence makes CX into a representation of G.

(c) The C-vector space CX is even a C-algebra: (f1·f2)(x) = f1(x)·f2(x) (point-wise

multiplication). Show that the action in the previous part is by C-algebra auto-

morphisms: for each g in G, the map CX → CX , f 7→ g•f is an isomorphism of

C-algebras.
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(d) Now we take G = SU(2) and X = C2, and the action is ( a −b
b a

)·(u
v
) = (au−bv

bu+av
). In

CX = C(C2) we have the sub-C-algebra C[x, y] of polynomial functions C2 → C,

with x(u, v) = u and y(u, v) = v. Compute, for ( a −b
b a

) in SU(2), ( a −b
b a

)•x and

( a −b
b a

)•y. You should find ax+ by and −bx+ ay.

(e) Conclude that the SU(2)-action on CX preserves C[x, y], and that(
a −b
b a

)
•(xjyk) = (ax+ by)j·(−bx+ ay)k .

Show that this agrees with the identities on page 10 of Benthem’s BSc thesis.

4. On page 12 of Benthem’s BSc thesis it is written that ker(SU(2)→ SO(3)) is the intersec-

tion of SU(2) = {x ∈ H : N(x) = 1} with the center Z(H) = {x ∈ H : ∀y ∈ H , xy = yx},
and that that intersection is {1,−1}. We provide details.

(a) Prove that Z(H) = R·1 ⊂ H.

(b) Prove that if x ∈ SU(2) is such that, for all y ∈ R·I + R·J + R·K, xyx−1 = y, then

x ∈ Z(H).

5. Prove the formula of Clebsch-Gordan, which means for us, prove that for d1 and d2 in

Z≥0, there is an isomorphism of representations of SU(2):

C[x, y]d1 ⊗ C[x, y]d2 −→
d1+d2⊕

d=|d1−d2|
d≡d1+d2 mod 2

C[x, y]d .

Hint: prove that both sides have the same character. Try first with small values for d1

and d2. Physicists use this to understand the total angular momentum (around some

given direction) of an atom with 2 electrons; see wikipedia.

6. (a) Let g be in O(3), with g 6= id. Show that the complex eigenvalues λ of g satisfy

|λ| = 1, and that if λ is an eigenvalue, then so is λ. Show that 1 or −1 is an

eigenvalue of λ.

(b) Let g be in SO(3), with g 6= id. Show that there is a unique φ ∈ [0, π] such that

the complex eigenvalues of g are 1, eiφ and e−iφ. Deduce from this that there is an

oriented orthonormal basis v1, v2, v3 of R3 such that g is the rotation about the line

R·v3 over the angle φ, and that with respect to the oriented basis v2, v1,−v3 g is

the rotation about R·v3 over the angle −φ.

(c) Make a character table for SO(3).
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