Papers in journals and proceedings
E. BERETTA, J. HULSHOF & L.A. PELETIER, On an ODE from forced coating flow, Diff. Eqns. 130 (1996), 247-265.
F. BERNIS & L.A. PELETIER, Two problems from draining flows involving third-order ordinary differential equations, SIAM, J. Math. Anal. 27 (1996) 515-527.
PH. CLf
PH. CLf
PH. CLf
PH. CL´EMENT, R. HAGMEIJER, G. SWEERS,
On a Dirichlet problem related to the invertibility of mappings arising in 2D grid generation problems,
in: Calculus of variations, applications and computations,
Pont-à-Mousson 1994, (ed. C. Bandle, J. Bemelmans,
and M. Chipot) Pitman Research Notes in Math. 326, Longman,
Harlow (1995), 67-83.
PH. CL´EMENT, R. HAGMEIJER & G. SWEERS,
On the invertibility of mappings arising in 2D grid generation problems,
Numer. Math., 73, (1996), 37-51.
PH. CL´EMENT, R. MAN´ASEVICH & E. MITIDIERI,
On a modified capillary equation,
J. Diff. Equations, 124, (1996), 343-358.
PH. CLf
P.R. DEN DECKER, R. VAN DER HOUT, C.J. VAN DUIJN & L.A. PELETIER,
A Stefan problem in a Bridgman crystal grower,
Euro. J. Appl. Math. 6 (1995), 191-199.
M.I.J. VAN DIJKE, C.J. VAN DUIJN & S.E.A.T.M. VAN DER ZEE,
Multiphase flow modeling of air sparaging,
Adv. Water Res. 18 (1995) 319-333.
C.J. VAN DUIJN, W.J.P. BOSMA & S.E.A.T.M. VAN DER ZEE,
Plume development of a nonlinearly adsorbing solute in
heterogeneous porous formations,
Water Resources Research 32, (1996), 1569-1584.
C.J. VAN DUIJN, C.N. DAWSON & R.E. GRUNDY,
Large time asymptotics in contaminant transport in porous media,
SIAM Appl. Math. 56, (1996), 965-993.
C.J. VAN DUIJN, & F.J.T. FLORIS,
On a singular diffusion equation originating from porous media flow,
Asymp. Anal. 10 (1995), 29-48.
C.J. VAN DUIJN, S. HENGST & P. KNABNER,
An analysis of crystal dissolution fronts in flows through porous media, Part I: Compatatible boundary conditions,
Adv. Water Res. 18 (1995), 171-185.
C.J. VAN DUIJN & C.A. MILLER,
Similarity solutions for gravity-dominated spreading of a lens of organic contaminant,
In: M.F. Wheeler, Environmental Studies: Mathematical, Computational and Statistical Analysis, pp. 291-304, IMA Volumes in Mathematics and its Applications, Springer Verlag (1996).
C.J. VAN DUIJN, J. MOLENAAR & M.J. DE NEEF,
The effect of capillary forces on immiscible two-phase flow in
heterogeneous porous media,
Trans. Porous Media 21 (1995), 71-93.
C.J. VAN DUIJN & M.A. PELETIER,
Asymptotic behaviour of solutions of a nonlinear transport equation,
Jour. für die reine und angew. Math (1996).
C.J. VAN DUIJN, & P.A.C. RAATS,
A note on horizontal distribution with capillary hysteresis,
Water Resources Res. 17 (1995), 61-83.
P.C. FIFE & L.A. PELETIER,
On the location of defects in stationary solutions of the Ginzburg-Landau
equation in ,
Quart. Appl. Math. 54 (1996), 85-104.
B.W. VAN DER FLIERT,
The viscous modulation of Lamb's dipole vortex,
Phys. Fluids, 8 (1996), 1975-1977.
B.W. VAN DER FLIERT,
Planar relative equilibrium vortices with free boundaries,
Nonlinearity 8 (1995), 963-982.
H.-CH. GRUNAU, G. SWEERS,
Classical solutions for some higher order semilinear elliptic
equations under weak growth conditions,
Nonlinear Analysis, T.M.A. 28 (1997), 799-807.
H.-CH. GRUNAU, G. SWEERS,
Positivity for perturbations of polyharmonic operators with
Dirichlet boundary conditions in two dimensions,
Math.Nachrichten. 179 (1996), 89-102.
D. HILHORST, R. VAN DER HOUT & L.A. PELETIER,
The fast reaction limit for a reaction-diffusion system,
J. Math. Anal. Appl. 199 (1996), 349-373.
J. HULSHOF,
A local analysis of similarity solutions of the thin film equation,
Gakuto International Series, Mathematical Sciences and Applications 7 (1995), 179-192.
J. HULSHOF & J.L. VAZQUEZ,
Maximal viscosity solutions of the modified porous medium
equation and their asymptotic behaviour,
Euro. J. App. Math. 7 (1996), 453-471.
J. HULSHOF & R.C.A.M. VAN DER VORST,
Asymptotic behaviour of ground states,
Proc. A.M.S. Vol 124, 8 (1996), 2423-2431.
J.F. KAASHOEK AND JEAN H.P. PAELINCK,
Studying the Dynamics of Pre-Geographical Space by Means of
Space and Time-Potential Partial Differential Equations,
Geographical Systems, 1996, Vol. 2, pp. 83-101
W.D. KALIES & C.A.M. VAN DER VORST,
Countable families of homoclinic and heteroclinic connections
for the extended Fisher-Kolmogorov equation,
Journ. Diff. Eq. 131 (1996), 209-228.
E. MITIDIERI, G. SWEERS,
Weakly coupled systems and positivity,
Math. Nachrichten 173 (1995), 259-286.
E. MITIDIERI, G. SWEERS, R.C.A.M. VAN DER VORST,
Non existence theorems for systems of quasilinear partial
differential equations,
Differential and Integral Equations 8 (1995), 1331-1354.
A. DEN OUTER, J.F. KAASHOEK AND H.R.G.K. HACK,
Difficulties with using continuous fractal theory for
discontinuity surfaces,
Int. J. Rock Mech. Min. Sci. & Geomech., Vol.32, No. 1, pp. 3 - 9, 1995.
A. DEN OUTER, J.F. KAASHOEK AND H.R.G.K. HACK
Discussion on using continuous fractal theory,
Int. J. Rock Mech. Min. Sci. & Geomech., Vol. 33, No. 4, pp. 439-442, 1996.
L.A. PELETIER & H. SERAFINI,
A very singular solution and other self-similar solutions of the heat equation with convection,
Nonlinear Anal. T.M.A. 24 (1995), 29-49.
L.A. PELETIER & W.C TROY,
Spatial patterns described by the extended Fisher-Kolmorogov (EFK) equation: Kinks,
Diff. Int. Eqns. 8 (1995) 1279-1304.
L.A. PELETIER & W.C. TROY,
Self-similar solutions for a free boundary problem in the doping of semiconductors,
Eur. J. Appl. Math. 6 (1995) 169-189.
L.A. PELETIER & W.C. TROY,
Chaotic spatial patterns described by the EFK equation,
J. Diff. Eqns. 126 (1996), 458-508.
L.A. PELETIER & W.C. TROY,
Spatial patterns in higher order phase transitions,
CWI Quart. 1 2 (1996), 121-129.
L.A. PELETIER & W.C. TROY,
A topological shooting method and
the existence of kinks in the Extended Fisher-Kolmogorov equation,
Topol. Methods in Nonlinear Anal. 6 (1996) 331-355.
L.A. PELETIER, W.C. TROY & R.C.A.M. VAN DER VORST,
Stationary solutions of a fourth order nonlinear diffusion equation,
(In Russian), Diff. Eqns. 31 (1995), 327-337.
R.C.A.M. VAN DER VORST,
Fourth order elliptic equations with critical growth,
C.R. Acad. Sci. Paris, 320 (I) (1995), 295-299.
Reports and pre-prints
M. AKVELD & J. HULSHOF,
Travelling wave solutions of a 4th order semilinear diffusion equation,
Leiden University, W96-22, to appear in Appl. Math. Letters.
PH. CLf
PH. CLf
PH. CLf
C.J. VAN DUIJN, C.N. DAWSON & R.E. GRUNDY,
Limiting profiles in reactive solute transport,
report AM-R9604 (March 1996), to appear in Transport in Porous Media.
C.J. VAN DUIJN & M.J. DE NEEF,
Self-similar profiles for capillary diffusion driven flow in heterogeneous porous media,
report AM-R9601 (January 1996), to appear in Advances in Water Resources.
C.J. VAN DUIJN & J.R. PHILIP,
Slumping of Brine Mounds: Bounds on Behavior,
accepted for publication in Journal of Hydrology 179, (1996), 159-180.
C.J. VAN DUIJN & R.J. SCHOTTING,
Brine transport in porous media: self-similar solutions,
report AM-R9616 (November 1996).
C.J. VAN DUIJN, R.J. SCHOTTING & P. KNABNER,
An analysis of crystal dissolution fronts in flows through porous media. Part II: Incompatible boundary conditions,
report AM-R9609 (July 1996), to appear in Advances in Water Resources.
P. FREITAS, G. SWEERS,
Positivity results for a nonlocal elliptic equation,
preprint.
V.A. GALAKTIONOV, J. HULSHOF & J.L. VAZQUEZ,
Extinction and focusing behaviour of spherical and annular
flames described by a free boundary problem,
Leiden University, W96-10, to appear in J. Math. Pures & Appl.
V.A. GALAKTIONOV & L.A. PELETIER,
Aysmptotic behaviour near finite time extinction for the fast diffusion equation,
Leiden University W95-11, to appear in Arch. Rational Mech. Anal.
H.-CH. GRUNAU, G. SWEERS,
Positivity for equations involving polyharmonic elliptic operators with Dirichlet boundary conditions,
to appear in Mathematische Annalen.
H.-CH. GRUNAU, G. SWEERS,
The maximum principle and positive principal eigenfunctions for polyharmonic equations,
preprint.
H.-CH. GRUNAU, G. SWEERS,
Positivity properties of elliptic Dirichlet problems of higher order,
to appear in Proceedings WCNA96, Elsevier Science LTD.
S.P. HASTINGS & L.A. PELETIER,
On self-similar solutions of the thin film equation when n = 3,
Leiden University, W96-08, to appear in Diff. Int. Eqns.
D. HILHORST, R. VAN DEN HOUT & L.A. PELETIER,
Diffusion in the presence of fast reaction: the case of the
general monotone reaction term,
Leiden University, W96-01. To appear in J. Math. Sci. Tokyo.
J. HULSHOF, E. MITIDIERI & R.C.A.M. VAN DER VORST,
Strongly indefinite system with critical Sobolev exponents,
Leiden University, W95-15, to appear in Trans. A.M.S.
J. HULSHOF & J.R. KING,
Analysis of a Darcy flow model with a dynamic pressure saturation relation,
Leiden University, W96-14, to appear in SIAM J. Appl. Math.
J.F. KAASHOEK AND J.H.P. PAELINCK,
Studying the Dynamics of Pre-Geographical Space by Means of Space and
Time-Potentialised Partial Differential Equations,
pp. 1-23, Report 9538/A, Ecometric Institute, Erasmus University Rotterdam, 1995
J.F. KAASHOEK AND J.H.P. PAELINCK,
Potentialised Partial Differential Equations in Economic Geography and
Spatial Economics: Multiple Dimensions and Control,
(pp. 1-25) Report 9664/B Econometric Institute.
W. D. KALIES, J. KWAPISZ & R.C.A.M. VAN DER VORST,
Homotopy classes for stable connections between Hamiltonian
saddle-focus equilibria,
to appear in Comm. Math. Phys.
W.D. KALIES, R.C.A.M. VAN DER VORST & T. WANNER,
Slow motion in higher-order systems and -convergence in one
space dimension,
preprint CDSNS 1996.
S. LI AND G. SWEERS,
Closed-form solution for a moving boundary problem.
R. MANf
L.A. PELETIER & S.I. POHOZAEV,
The Cauchy problem for the extended Fisher-Kolmorogov (EFK) equation,
Leiden University, W96-07.
L.A. PELETIER & W.C. TROY,
Spatial patterns described by the Extended Fisher-Kolmogorov (EFK)
equation: Periodic solutions,
IMA Preprint Series # 1289, February 1995, to appear in SIAM J. Math. Anal.
L.A. PELETIER & W.C. TROY,
Multibump periodic travelling waves in suspension bridges,
Leiden University, W96-17, to appear in Proc. Roy. Soc. Edinburgh.
N. STAVRAKAKIS, G. SWEERS,
Positivity for a noncooperative system of elliptic equations in
,
report 96-15 TWI, TUDelft.
G. SWEERS,
Hopf's lemma and two-dimensional domains with corners,
report 96-46 TWI, TUDelft.
G. SWEERS,
is sharp for the antimaximum principle,
to appear in J. Diff. Equ.
Next: 2.4. Numerical Analysis
Up: Analysis
Previous: 2.2. Lie GroupsSpecial
J.H.M.Dassen
Fri Mar 20 16:01:06 MET 1998