Next: Representation Theory of Algebraic
Up: Function Spaces and the
Previous: Topological equivalence of function
[1]
A. V. A
RHANGEL'SKI,
On linear homeomorphisms of function spaces,
Soviet Math. Doklady 25 (1982), 852-855.
[2]
A. V. A
RHANGELSKI
,
A survey of
-theory, Questions and Answers,
Gen. Top. 5 (1987), 1-109.
[3]
A. V. A
RHANGELSKI
,
Topological function spaces,
Math. Appl., vol. 78, Kluwer Academic Publishers, Dordrecht, 1992.
[4]
A. V. A
RHANGELSKI
,
Some observations on
-theory and bibliography,
Top. Appl. 89 (1998), 203-221.
[5]
J. BAARS, H. GLADDINES, AND J. VAN MILL,
Absorbing systems in infinite-dimensional manifolds,
Top. Appl. 50 (1993), 147-182.
[6]
J. BAARS AND J. DE GROOT,
On topological and linear equivalence of certain function spaces,
CWI Tract, vol. 86, Centre for Mathematics and Computer Science, Amsterdam, 1990
[7]
J. BAARS, J. DE GROOT, AND J. PELANT,
Function spaces of completely metrizable spaces,
Trans. Amer. Math. Soc. 340 (1993), 871-879.
[8]
C. B
ESSAGA AND A. P
ECZY´NSKI,
Spaces of continuous functions
(on isomorphical classification of spaces of continuous functions),
Studia Math. 19 (1960), 53-62.
[9]
M. BESTVINA AND J. MOGILSKI,
Characterizing certain incomplete infinite-dimensional absolute retracts,
Michigan Math. J. 33 (1986), 291-313.
[10]
J. CALBRIX,
Classes de Baire et espaces d'applications continues,
C. R. Acad. Sci. Paris 301 (1985), 759-762.
[11]
J. CALBRIX,
Filtres Boréliens sur l'ensemble des entiers et espaces des applications continues,
Rev. Roumaine Math. Pure Appl. 33 (1988), 655-661.
[12]
R. C
AUTY,
La classe Borélienne ne détermine pas le type topologique de
,
Serdica Math. J. 24 (1998), 307-318.
[13]
R. C
AUTY, T. D
OBROWOLSKI, AND W. M
ARCISZEWSKI,
A contribution to the topological classification of the spaces
,
Fund. Math. 142 (1993), 269-301.
[14]
J. DIJKSTRA, T. GRILLIOT, J. VAN MILL, AND D. J. LUTZER,
Function spaces of low Borel complexity,
Proc. Amer. Math. Soc. 94 (1985), 703-710.
[15]
J. DIJKSTRA AND J. MOGILSKI,
The ambient homeomorphy of certain function and sequence spaces,
Comm. Math. Univ. Carolinae 37 (1996), 595-611.
[16]
T. D
OBROWOLSKI, W. M
ARCISZEWSKI, AND J. M
OGILSKI,
On topological classification of function spaces
of low Borel complexity,
Trans. Amer. Math. Soc. 678 (1991), 307-324.
[17]
J. DUGUNDJI,
Topology,
Allyn and Bacon, Boston, 1966.
[18]
I. M. GELFAND AND A. N. KOLMOGOROFF,
On rings of continuous functions on topological spaces,
Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS 22 (1939), 11-15.
[19]
S. P. G
UL'KO AND T. E. K
HMYLEVA,
Compactness is not preserved by
-equivalence,
Mat. Zametki 39 (1986), 895-903, in Russian.
[20]
D. J. LUTZER AND R. MCCOY,
Category in function spaces. I,
Pac. J. Math. 90 (1980), 145-168.
[21]
D. J. LUTZER, J. VAN MILL, AND R. POL,
Descriptive complexity of function spaces,
Trans. Amer. Math. Soc. 291 (1985), 121-128.
[22]
W. M
ARCISZEWSKI,
A function space
not linearly homeomorphic to
,
Fund. Math. 153 (1997), 125-140.
[23]
R. A. MCCOY AND I. NTANTU,
Topological properties of spaces of continuous functions,
Lecture Notes in Mathematics, vol. 1315, Springer-Verlag, 1988.
[24]
A. A. MILJUTIN,
Isomorphisms of the spaces of continuous functions over compact sets of the cardinality
of the continuum,
Teor. Funkcii Funk cional Anal i Prilozen (in Russian) (Kharkov) 2
(1966), 150-156.
[25]
J. VAN MILL,
Topological equivalence of certain function spaces,
Compositio Math. 63 (1987), 159-188.
[26]
J.
VAN M
ILL,
is not
: a simple proof,
Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 47 (1999), 319-323.
[27]
J. NAGATA,
On lattices of functions on topological spaces and functions on uniform spaces,
Osaka Math. J. 1 (1949), 166-181.
[28]
V. G. P
ESTOV,
The coincidence of the dimension
of
-equivalent topological spaces,
Soviet Math. Doklady 26 (1982), 380-383.
Next: Representation Theory of Algebraic
Up: Function Spaces and the
Previous: Topological equivalence of function